Targeting the orphan nuclear receptor LRH-1 with small molecules
用小分子靶向孤儿核受体 LRH-1
基本信息
- 批准号:10660545
- 负责人:
- 金额:$ 56.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdipose tissueAffinityAgonistAmericanAntidiabetic DrugsAtherosclerosisAwardBehaviorBile AcidsBindingBinding SitesBiologicalBiological AssayBiological AvailabilityBiologyCRISPR/Cas technologyCardiovascular DiseasesCharacteristicsChargeChemicalsChemistryClinicalDevelopmentDiabetes MellitusDiseaseDoseDrug KineticsEpidemicExposure toFatty AcidsFatty acid glycerol estersGene ExpressionGenerationsGlucoseHealthHomeostasisHumanInsulinInsulin ResistanceKnowledgeLeadLigand BindingLigandsLipidsLiverMeasuresMetabolicMetabolic DiseasesMetabolic PathwayModelingModificationMonitorMusMyocardial InfarctionNR5A2 geneNon-Insulin-Dependent Diabetes MellitusNuclear Hormone ReceptorsNuclear Orphan ReceptorObese MiceObesityOral cavityOvernutritionOverweightPharmacodynamicsPharmacologyPhospholipidsPlasmaProteinsProteomicsResearchRiskRodentRodent ModelSeriesStrokeStructureStructure-Activity RelationshipSurfaceTestingTherapeuticTherapeutic AgentsTissuesUnited StatesWorkbiophysical propertiescomorbiditydesigndiet-induced obesitydietaryefficacy evaluationfatty liver diseaseglucose metabolismglucose tolerancehumanized mouseimprovedin vivoinnovationinsightinsulin sensitivitylipid metabolismlipidomicslipophilicityliquid chromatography mass spectrometryliver functionmRNA Expressionmortality riskmouse modelnew therapeutic targetnon-alcoholic fatty liver diseasenovelpre-clinicalpreclinical studyreverse cholesterol transportsmall moleculesuccesstooltranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY
Obesity is a growing epidemic in the United States, leading to increases in cases of nonalcoholic fatty liver
disease (NAFLD), cardiovascular disease, and type II diabetes. A common characteristic of these diseases is
aberrant lipid and glucose metabolism. This proposal centers on the nuclear hormone receptor, Liver Receptor
Homolog 1 (LRH-1), which acts as an important regulator of lipid metabolism, reverse cholesterol transport,
glucose sensing, and homeostasis. As such, LRH-1 represents a novel therapeutic target for metabolic
diseases. LRH-1 binds to phospholipids (PLs) and is activated by the unusual PL dilauroylphosphatidylcholine
(DLPC) which shows potent anti-diabetic effects. The discovery that LRH-1 is regulated by PL ligands reveals
an exciting potential to tune LRH-1 activity for the treatment of metabolic diseases. However, PLs are labile
and not suitable for clinical use, necessitating the development of small molecule agonists. This has proved
challenging thus far, since very few small molecules can displace endogenous lipids from the large, lipophilic
binding pocket. Recent studies in our lab have characterized a class of small molecules that are capable of this
feat. Using robust SAR and innovative chemistry, we have designed potent LRH-1 agonists that display
biological activity. We have modified our most potent and efficacious agonists to improve their biophysical
properties, making them suitable for in vivo studies. The advancement of LRH-1 agonists as therapeutics has
also been hindered by the lack of appropriate rodent models to screen potential candidates due to small
sequence differences in the binding pocket of rodent and human LRH-1. To overcome this barrier, we used a
CRISPR-Cas9 strategy to humanize the mouse LRH-1 ligand binding pocket. This permits activation by
synthetic agonists while minimizing changes to endogenous interaction surfaces. These leaps forward in lead
compound development and mouse model generation, in combination with our deep knowledge of LRH-1
structure and function, create an ideal platform to develop candidate preclinical LRH-1 modulators for
metabolic disease. Here, we have developed a strategy to define mechanisms of action, target engagement,
pharmacology, and disease efficacy of our lead compounds. In aim 1, we generate compounds with improved
biophysical properties that mimic PL-like activation. We will perform mechanistic characterization of these
compounds to explore how contacting the PL-binding site with different polar moieties improves LRH-1
activation. In aim 2, we will examine the behavior of our lead compounds from an ADME perspective. The
primary objective will be to establish tractability of the compounds using our humanized mice, so that
pharmacokinetic relationships can be established. In aim 3, we will use our humanized mice and a model of
diet-induced obesity to evaluate the in vivo efficacy of our lead LRH-1 compounds to improve glucose
tolerance and insulin resistance.
项目概要
肥胖在美国日益流行,导致非酒精性脂肪肝病例增加
疾病(NAFLD)、心血管疾病和 II 型糖尿病。这些疾病的一个共同特点是
脂质和葡萄糖代谢异常。该提案以核激素受体、肝脏受体为中心
同源物 1 (LRH-1),作为脂质代谢的重要调节剂,逆转胆固醇转运,
葡萄糖感应和体内平衡。因此,LRH-1代表了代谢性疾病的一个新的治疗靶点。
疾病。 LRH-1 与磷脂 (PL) 结合并被不寻常的 PL 二月桂酰磷脂酰胆碱激活
(DLPC)显示出有效的抗糖尿病作用。 LRH-1 受 PL 配体调节的发现揭示了
调节 LRH-1 活性以治疗代谢疾病的令人兴奋的潜力。然而,PL 是不稳定的
且不适合临床使用,需要开发小分子激动剂。这已经证明了
迄今为止具有挑战性,因为很少有小分子可以从大的亲脂性脂质中取代内源性脂质
装订口袋。我们实验室最近的研究已经表征了一类能够做到这一点的小分子
壮举。利用强大的 SAR 和创新化学,我们设计了有效的 LRH-1 激动剂,
生物活性。我们修改了最有效的激动剂,以改善其生物物理学
特性,使其适合体内研究。 LRH-1 激动剂作为治疗药物的进展
由于尺寸较小,缺乏适当的啮齿动物模型来筛选潜在的候选者也受到阻碍。
啮齿动物和人类 LRH-1 结合口袋的序列差异。为了克服这个障碍,我们使用了
CRISPR-Cas9 策略使小鼠 LRH-1 配体结合袋人源化。这允许通过以下方式激活
合成激动剂,同时最大限度地减少内源相互作用表面的变化。这些领先地位的飞跃
结合我们对 LRH-1 的深入了解,进行化合物开发和小鼠模型生成
结构和功能,创建一个理想的平台来开发候选临床前 LRH-1 调节剂
代谢性疾病。在这里,我们制定了一项战略来定义行动机制、目标参与、
我们的先导化合物的药理学和疾病功效。在目标 1 中,我们生成具有改进的化合物
模拟 PL 样激活的生物物理特性。我们将对这些进行机械表征
化合物来探索 PL 结合位点与不同极性部分的接触如何改善 LRH-1
激活。在目标 2 中,我们将从 ADME 角度检查先导化合物的行为。这
主要目标是使用我们的人源化小鼠确定化合物的易处理性,以便
可以建立药代动力学关系。在目标 3 中,我们将使用我们的人源化小鼠和模型
饮食诱导的肥胖,以评估我们的先导 LRH-1 化合物改善血糖的体内功效
耐受性和胰岛素抵抗。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Rho-GEF PIX-1 directs assembly or stability of lateral attachment structures between muscle cells.
- DOI:10.1038/s41467-020-18852-4
- 发表时间:2020-10-06
- 期刊:
- 影响因子:16.6
- 作者:Moody JC;Qadota H;Reedy AR;Okafor CD;Shanmugan N;Matsunaga Y;Christian CJ;Ortlund EA;Benian GM
- 通讯作者:Benian GM
Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK.
- DOI:10.1016/j.yjmcc.2018.01.011
- 发表时间:2018-03
- 期刊:
- 影响因子:5
- 作者:Shimizu Y;Polavarapu R;Eskla KL;Nicholson CK;Koczor CA;Wang R;Lewis W;Shiva S;Lefer DJ;Calvert JW
- 通讯作者:Calvert JW
Structural insights into glucocorticoid receptor function.
- DOI:10.1042/bst20210419
- 发表时间:2021-11-01
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
Hydroarylation of Arenes via Reductive Radical-Polar Crossover.
- DOI:10.1021/jacs.0c03926
- 发表时间:2020-05-20
- 期刊:
- 影响因子:15
- 作者:Flynn AR;McDaniel KA;Hughes ME;Vogt DB;Jui NT
- 通讯作者:Jui NT
Structural basis for glucocorticoid receptor recognition of both unmodified and methylated binding sites, precursors of a modern recognition element.
- DOI:10.1093/nar/gkab605
- 发表时间:2021-09-07
- 期刊:
- 影响因子:14.9
- 作者:Liu X;Weikum ER;Tilo D;Vinson C;Ortlund EA
- 通讯作者:Ortlund EA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Winter Calvert其他文献
John Winter Calvert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Winter Calvert', 18)}}的其他基金
Regulation of CSE-Derived Hydrogen Sulfide in the Heart
CSE 衍生的硫化氢在心脏中的调节
- 批准号:
10659832 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Novel Insights into Ischemic-Induced Cardiac Remodeling
对缺血引起的心脏重塑的新见解
- 批准号:
9934694 - 财政年份:2018
- 资助金额:
$ 56.93万 - 项目类别:
Novel Insights into Ischemic-Induced Cardiac Remodeling
对缺血引起的心脏重塑的新见解
- 批准号:
10063890 - 财政年份:2018
- 资助金额:
$ 56.93万 - 项目类别:
Targeting the orphan nuclear receptor LRH-1 with small molecules
用小分子靶向孤儿核受体 LRH-1
- 批准号:
9403854 - 财政年份:2017
- 资助金额:
$ 56.93万 - 项目类别:
Targeting the orphan nuclear receptor LRH-1 with small molecules
用小分子靶向孤儿核受体 LRH-1
- 批准号:
10681892 - 财政年份:2017
- 资助金额:
$ 56.93万 - 项目类别:
Hydrogen sulfide attenuates heart failure through Nrf2-mediated signaling
硫化氢通过 Nrf2 介导的信号传导减轻心力衰竭
- 批准号:
8383492 - 财政年份:2010
- 资助金额:
$ 56.93万 - 项目类别:
Hydrogen sulfide attenuates heart failure through Nrf2-mediated signaling
硫化氢通过 Nrf2 介导的信号传导减轻心力衰竭
- 批准号:
7767448 - 财政年份:2010
- 资助金额:
$ 56.93万 - 项目类别:
Hydrogen sulfide attenuates heart failure through Nrf2-mediated signaling
硫化氢通过 Nrf2 介导的信号传导减轻心力衰竭
- 批准号:
8011451 - 财政年份:2010
- 资助金额:
$ 56.93万 - 项目类别:
Hydrogen sulfide attenuates heart failure through Nrf2-mediated signaling
硫化氢通过 Nrf2 介导的信号传导减轻心力衰竭
- 批准号:
8197419 - 财政年份:2010
- 资助金额:
$ 56.93万 - 项目类别:
Hydrogen sulfide attenuates heart failure through Nrf2-mediated signaling
硫化氢通过 Nrf2 介导的信号传导减轻心力衰竭
- 批准号:
8586340 - 财政年份:2010
- 资助金额:
$ 56.93万 - 项目类别:
相似国自然基金
YTHDC1调控棕色脂肪组织大小、发育和能量代谢的作用机制研究
- 批准号:32371198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
- 批准号:82370731
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于ADPN-Cer轴的柑橘黄酮调控能量负平衡奶牛脂肪组织脂解的分子机制
- 批准号:32302767
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Acvrl1调控脂肪组织巨噬细胞M1/M2极化改善肥胖的机制研究
- 批准号:82300973
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ANGPTLs基因及其蛋白表达水平调控内脏脂肪组织影响健康衰老表型的前瞻性队列研究
- 批准号:82373661
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A novel role of cholesterol and SR-BI in adipocyte biology
胆固醇和 SR-BI 在脂肪细胞生物学中的新作用
- 批准号:
10733720 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Molecular and cellular analysis of the ABHD5/PNPLA3 metabolon in lipid homeostasis
ABHD5/PNPLA3 代谢在脂质稳态中的分子和细胞分析
- 批准号:
10296888 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别:
TRANSCRIPTIONAL REGULATION OF BEIGE ADIPOCYTE CELLULAR PLASTICITY
米色脂肪细胞可塑性的转录调控
- 批准号:
10276132 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别:
TRANSCRIPTIONAL REGULATION OF BEIGE ADIPOCYTE CELLULAR PLASTICITY
米色脂肪细胞可塑性的转录调控
- 批准号:
10445307 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别:
Molecular and cellular analysis of the ABHD5/PNPLA3 metabolon in lipid homeostasis
ABHD5/PNPLA3 代谢在脂质稳态中的分子和细胞分析
- 批准号:
10453590 - 财政年份:2021
- 资助金额:
$ 56.93万 - 项目类别: