Elucidating how transcription factors MAFA and MAFB and mitochondrial activity control human β cell identity and function
阐明转录因子 MAFA 和 MAFB 以及线粒体活性如何控制人类细胞的身份和功能
基本信息
- 批准号:10660007
- 负责人:
- 金额:$ 14.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectB-LymphocytesBackBeta CellBiogenesisBiological AssayBlood GlucoseCell Differentiation processCell LineCell MaturationCell physiologyCellsComplement Factor BConsumptionDataDefectDiabetes MellitusEquilibriumEtiologyFailureFeedbackFunctional disorderFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGene Expression RegulationGene TargetingGenesGeneticGenetic TranscriptionGlucoseHealthHomoHumanImpairmentInsulinLife Cycle StagesMetabolicMetabolic ControlMitochondriaMitochondrial DNAMusNon-Insulin-Dependent Diabetes MellitusNuclearOxidative StressOxygen ConsumptionPathway interactionsPatientsPhosphotransferasesPhysiologicalProteinsRegulationReportingRoleSignal TransductionStructureTestingTransplantationbiological adaptation to stressblood glucose regulationcell dedifferentiationfactor Afunctional restorationhuman embryonic stem cellhumoral immunity deficiencyin vivoinsulin secretionisletknock-downmaturity onset diabetes of the youngmetabolomicsmitochondrial dysfunctionoxidative damagepharmacologicprogramsresponsesingle-cell RNA sequencingstem cellstargeted treatmenttooltranscription factor
项目摘要
Project Summary
Type 2 diabetes (T2D) can be attributed to loss of β-cell identity or de-differentiation, marked by acquisition of
immature cell markers and loss of insulin expression and secretion. While the etiology of β-cell immaturity in T2D
is unclear, impairments in nuclear-encoded mitochondrial gene expression and transcription factor (TF)
expression occur. Additionally, defects in mitochondrial structure and function leads to impaired glucose-
stimulated insulin secretion (GSIS) and have been reported in β-cells of human T2D patients. Interestingly, the
transcriptional changes that occur during β-cell immaturity involve loss of the nuclear-encoded mitochondrial
gene expression program. My studies will test the hypothesis that β-cell immaturity in T2D is driven by loss of
mitochondrial functional gene regulation by the TFs MAF bZIP transcription factor A (MAFA) or B (MAFB).
Furthermore, I predict that MAFA/MAFB are themselves targets of mito-nuclear crosstalk through a retrograde
signaling cascade induced by defects in mitochondrial function.
I will elucidate the contribution of MAFA and MAFB on metabolic control in human β cells through
regulation of mitochondrial function (Aim 1). I will determine how loss of MAFA and/or MAFB affects
mitochondrial function and β cell identity by assaying oxygen consumption and gene expression in MAFA and/or
MAFB knockdown human pseudoislets and EndoC-βH3 β cell lines. Metabolomics will be performed on EndoC-
βH3 β cell lines to determine how MAFA/B influences fuel utilization. My preliminary data shows that genetic loss
of mitophagy (i.e., the balance of mitochondrial biogenesis and turnover) reduces β-cell maturity. This includes
physiologic, metabolic, and transcriptional signatures consistent with metabolic overload, oxidative damage, and
the integrated stress response (ISR). MAFA (and likely MAFB) is known to be more sensitive to oxidative stress
associated with T2D β-cell dysfunction than other TFs. While nuclear expression of β-cell mitochondrial genes
are well known, mitochondrial feedback to drive β-cell nuclear gene expression (retrograde signaling) has not
been analyzed. I will delineate if TF levels and β-cell maturity are altered in response to mitochondrial dysfunction
(Aim 2). Further, I observed that pharmacological inhibition of the ISR relieves markers of immaturity in islets of
mitophagy-deficient mice. Utilizing pharmacologic tools and analysis of gene expression in human pseudoislet
transplants and EndoC-βH3 cells, I will interrogate how such conditions impact human β cells. I expect that
MAFA (and possibly MAFB) levels will be reduced because of their ISR sensitivity. Moreover, I will determine if
inhibition of the ISR restores MAFA/MAFB expression and reverses β-cell immaturity in the background of
mitochondrial damage.
项目概要
2 型糖尿病 (T2D) 可归因于 β 细胞特性丧失或去分化,其特征是获得
不成熟的细胞标志物以及胰岛素表达和分泌的丧失,而 T2D 中 β 细胞不成熟的病因。
尚不清楚,核编码线粒体基因表达和转录因子(TF)的损伤
此外,线粒体结构和功能的缺陷会导致葡萄糖受损。
刺激胰岛素分泌 (GSIS),并已在人类 T2D 患者的 β 细胞中得到报道。
β细胞不成熟期间发生的转录变化涉及核编码线粒体的丢失
我的研究将验证 T2D 中 β 细胞不成熟是由基因表达缺失引起的假设。
线粒体功能基因由 TF MAF bZIP 转录因子 A (MAFA) 或 B (MAFB) 调节。
此外,我预测 MAFA/MAFB 本身就是通过逆行线粒体核串扰的目标
线粒体功能缺陷引起的信号级联反应。
我将通过以下方式阐明 MAFA 和 MAFB 对人类 β 细胞代谢控制的贡献
线粒体功能的调节(目标 1)我将确定 MAFA 和/或 MAFB 的损失如何影响。
通过测定 MAFA 和/或中的耗氧量和基因表达来确定线粒体功能和 β 细胞身份
MAFB 敲低人类伪胰岛和 EndoC-βH3 β 细胞系将在 EndoC- 上进行代谢组学。
βH3 β 细胞系以确定 MAFA/B 如何影响燃料利用 我的初步数据表明遗传损失。
线粒体自噬(即线粒体生物发生和周转的平衡)会降低 β 细胞的成熟度。
生理、代谢和转录特征与代谢超载、氧化损伤和
已知综合应激反应 (ISR) 对氧化应激更敏感。
与 T2D β 细胞功能障碍相关性高于其他 TF,而 β 细胞线粒体基因的核表达。
众所周知,驱动 β 细胞核基因表达(逆行信号传导)的线粒体反馈尚未
我将描述 TF 水平和 β 细胞成熟度是否因线粒体功能障碍而改变。
(目标 2)此外,我观察到 ISR 的药理学抑制可减轻胰岛的不成熟标志。
利用药理学工具和分析人伪胰岛的基因表达。
移植和 EndoC-βH3 细胞,我将探究这些条件如何影响人类 β 细胞。
由于 ISR 敏感性,MAFA(可能还有 MAFB)水平会降低。此外,我将确定是否会降低。
抑制 ISR 可恢复 MAFA/MAFB 表达并逆转 β 细胞不成熟
线粒体损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily M Walker其他文献
Emily M Walker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肠神经胶质细胞对肠B淋巴细胞的影响及其在炎症性肠病发生发展中的作 用
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
失重对B淋巴细胞免疫应答的影响及其力学生物学机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
肝激酶B1(LKB1)调控脂肪2型天然淋巴细胞(ILC2)的功能影响肥胖及2型糖尿病发生
- 批准号:81971487
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
Wnt/β-catenin和NF-κB信号串扰在褪黑激素核受体介导单色光影响鸡淋巴细胞增殖中的作用
- 批准号:31873000
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
结肠癌细胞分泌APRIL对B细胞功能的影响和调控机制的研究
- 批准号:81702405
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 14.25万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 14.25万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 14.25万 - 项目类别:
Mechanisms by which PIM kinase modulates the effector function of autoreactive CD8 T cells in type 1 diabetes
PIM 激酶调节 1 型糖尿病自身反应性 CD8 T 细胞效应功能的机制
- 批准号:
10605431 - 财政年份:2023
- 资助金额:
$ 14.25万 - 项目类别:
High-throughput identification and transcriptional analysis of autoreactive T cells in individuals with membranous nephropathy.
膜性肾病患者自身反应性 T 细胞的高通量鉴定和转录分析。
- 批准号:
10725558 - 财政年份:2023
- 资助金额:
$ 14.25万 - 项目类别: