A dendritic nexus in the circuits that coordinate learning
协调学习的电路中的树突状连接
基本信息
- 批准号:10659554
- 负责人:
- 金额:$ 37.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAnatomyApicalAreaBehaviorBehavior ControlBehavioralBiological ModelsBiological Neural NetworksBrainCalciumCalcium SpikesCellsCodeCognition DisordersComplexComputer ModelsCustomDataDendritesElementsEventFeedbackFutureGenerationsGlutamatesImageIndividualInterventionKnowledgeLaboratoriesLearningLearning SkillMachine LearningMapsMeasuresMicroscopeModelingModificationMonitorMotorMotor CortexMusNervous SystemNeuronsOpticsOutcomeOutputPerformancePhasePlayPopulationPositioning AttributeProcessPublishingRecurrenceRoleSensoryShort-Term MemorySignal TransductionSourceSynapsesTechniquesTestingThalamic structureWeightWorkbehavior changebehavioral outcomeexperienceexperimental studyfrontal lobeimprovedin vivoinhibitory neuroninsightmachine learning algorithmmulti-photonnoveloptogeneticsresponsesegregationsensory cortexsensory feedbacksignal processingtheoriestransmission processtwo-photon
项目摘要
Abstract
When we learn a complex behavior the nervous system must continuously drive new actions, compare
predictions for the actions against outcomes, and strengthen or weaken the connections between neurons
(synapses) in order to improve future actions. However, within the multilayer brain networks that control behavior,
the behavioral impact of modifying a synapse depends upon many downstream connections. Thus, learning
requires the brain solve a ‘credit assignment’ problem: information about which synaptic modifications should be
made is distributed across the network, yet must somehow be leveraged by local processes to guide change at
individual synapses. A major gap in our ability to relate behavioral events to synaptic change is the current lack
of knowledge of these local processes that guide synaptic changes at individual neurons. Recent theories of
learning suggest that spikes generated in the apical dendrites of cortical neurons may play a key role in solving
this credit assignment problem. The experiments in this proposal will test the hypothesis that the apical dendrites
of neurons in the pre-motor cortex integrate multiple learning-instructive feedback sources, and – under
appropriate conditions – generate dendritic spikes that rapidly reconfigure the connectivity and function of
neurons. In these experiments we will use advanced optical techniques to monitor and manipulate activity in the
dendrites of a subset of neurons in the frontal cortex that have a well-delineated role in action planning. A key
prediction of our hypothesis is that the activity of the apical dendrites reflects local credit-related calculations and
that this activity is distinct from the activity transmitted to other neurons by action potential generation near the
cell body. We will test this using longitudinal two-photon calcium imaging of cortical neurons during learning to
determine how the behavioral selectivity of dendrites and cell bodies change with changing behavior. In order to
identify the contribution of dendritic spikes to learning, we will also use optogenetics to selectively suppress
activity in the apical dendrites during learning. Computational models also predict that dendritic spikes are
generated by a mismatch between outcome information arriving from long-range feedback projections and local
inhibition that predicts this feedback. To test this, we will combine synaptic glutamate imaging and optogenetics
to map the selectivity and anatomical identity of feedback projections to the apical dendrites, and calcium imaging
to determine the selectivity of local inhibitory neurons that target the apical dendrites. Together, these studies
will provide critical new insights into the circuit mechanisms governing cortical plasticity and credit assignment.
In doing so, they will provide a key framework for connecting complex learning with modifications at the individual
synapse level, and will build bridges between machine learning algorithms and models of biological neural
networks.
抽象的
当我们学习一种复杂的行为时,神经系统必须不断驱动新的行为,比较
预测针对结果的行动,并加强或削弱神经元之间的连接
(突触)以改善未来的行动然而,在控制行为的多层大脑网络中,
修改突触的行为影响取决于许多下游连接,因此,学习。
要求大脑解决“信用分配”问题:关于应该进行哪些突触修饰的信息
made 分布在整个网络中,但必须以某种方式被本地流程利用来指导变革
我们将行为事件与突触变化联系起来的能力的一个主要差距是目前的缺乏。
指导单个神经元突触变化的这些局部过程的知识。
研究表明,皮质神经元顶端树突中产生的尖峰可能在解决问题中发挥关键作用
这个学分分配问题将检验顶端树突的假设。
前运动皮层中的神经元整合了多个学习指导反馈源,并且 - 在
适当的条件 - 产生树突尖峰,快速重新配置连接和功能
在这些实验中,我们将使用先进的光学技术来监测和操纵神经元的活动。
额叶皮层神经元子集的树突在行动计划中具有明确的作用。
我们的假设的预测是,顶端树突的活动反映了局部信用相关的计算和
这种活动与通过在神经元附近产生动作电位而传递给其他神经元的活动不同
我们将在学习过程中使用皮质神经元的纵向双光子钙成像来测试这一点。
确定树突和细胞体的行为选择性如何随着行为的变化而变化。
确定树突尖峰对学习的贡献,我们还将使用光遗传学来选择性抑制
学习过程中顶端树突的活动也预测树突尖峰。
由远程反馈预测和本地反馈预测得出的结果信息之间不匹配而产生
为了测试这一点,我们将结合突触谷氨酸成像和光遗传学。
将反馈投影的选择性和解剖学特性映射到顶端树突和钙成像
这些研究共同确定了针对顶端树突的局部抑制神经元的选择性。
将为控制皮质可塑性和信用分配的回路机制提供重要的新见解。
在此过程中,他们将提供一个关键框架,将复杂的学习与个人的修改联系起来。
突触级别,并将在机器学习算法和生物神经模型之间架起桥梁
网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Michael Kerlin其他文献
Aaron Michael Kerlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Michael Kerlin', 18)}}的其他基金
Imaging at the speed of spikes: An electro-optical multiphoton microscope
以尖峰速度成像:光电多光子显微镜
- 批准号:
10516843 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别:
Suprachiasmatic nucleus to kisspeptin circuit in the circadian control of reproduction
视交叉上核至 Kisspeptin 回路在生殖昼夜节律控制中的作用
- 批准号:
10660156 - 财政年份:2023
- 资助金额:
$ 37.52万 - 项目类别: