Dissecting and engineering CAR T-cell function for optimized Immunotherapy
剖析和设计 CAR T 细胞功能以优化免疫治疗
基本信息
- 批准号:10657478
- 负责人:
- 金额:$ 34.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationB lymphoid malignancyB-Cell Acute Lymphoblastic LeukemiaBiocompatible MaterialsBiomanufacturingBiomechanicsBone MarrowBrain GlioblastomaCAR T cell therapyCD19 geneCancer BiologyCancer PrognosisCell physiologyCellsChildChildhood Precursor B Lymphoblastic LeukemiaClinicClinicalClinical TrialsDevelopmentElementsEngineeringGoalsHeterogeneityImmuneImmunityImmunologic MonitoringImmunologicsImmunophenotypingImmunosuppressionImmunotherapeutic agentImmunotherapyIn SituLab On A ChipMalignant Bone Marrow NeoplasmMapsMechanicsModelingMolecularPatientsProcessRefractoryRelapseReportingResearchSafetySiteSolid NeoplasmSystemT-Cell ActivationTechnologyVariantWorkanticancer researchcancer diagnosiscareerchimeric antigen receptorchimeric antigen receptor T cellscytotoxicityexhaustionfunctional statusimmune resistanceimmunoengineeringimprovedinnovationinsightleukemiamanufacturemicrosystemsnovelpatient responsepatient screeningpre-clinicalpromoterresponsescreeningspatiotemporalstemtranslational cancer researchtumor microenvironment
项目摘要
PROJECT SUMMARY
My long-term career goal is to develop translational technologies for cancer research that can accelerate
discoveries from the benchtop to the clinic to make a real impact on clinical trials and patient management. My
current research leverages engineering advances in biomaterials, microsystems, and biomanufacturing for new
and improved clinical solutions to emerging problems in cancer biology and immune engineering. Specific
examples include lab-on-a-chip systems for single-cell sensing and immunomonitoring, glioblastoma brain tumor
microenvironment modeling for rapid cancer diagnosis and prognosis, and micromechanical systems for
exploring stem and immune cell mechanobiology. I proposes to expand on my work in new capacity in
translational cancer research for novel engineering systems for on-site immunotherapeutic patient screening.
With the recent FDA approval of chimeric antigen receptor (CAR) T-cell immunotherapies for B-cell
malignancies, CAR T-cell therapies are a promising strategy to cure relapsed and refractory leukemia as well as
solid tumors. However, the clinical benefit of CAR-T immunotherapy varies tremendously in many clinical trials
and overall patient responses reported in trials of relapsed/refractory leukemia remain unfavorable. Factors that
contribute to variable clinical responses may arise from early steps like CAR T-cell manufacturing or
administration, CAR T-cell exhaustion and immunological resistance in the leukemic niche, but the key elements
leading to variations in CAR T-cell efficacy are not fully understood.
The objective of our research is to develop novel engineering systems to probe and analyze both the
immunological and biomechanical attributes of CAR T-cells and map the leukemic BM niche for advancing
current CAR T-cell immunotherapies. First of all, we aim to reconstruct a novel organotypic leukemic BM
immunity niche ex vivo model to dissect the heterogeneity of immunosuppression mechanisms of different B-
ALL subtypes and pre-clinically evaluate and optimize CD19 CAR T-cell immunotherapy efficacy. Secondly, we
aim to develop and integrate in situ cellular and molecular immunophenotyping systems at single-cell level and/or
in a 3D organotypic setting so as to provide a reliable and accurate screening to characterize the functional
status of CAR T-cells. Lastly, we will explore CAR T-cell mechanosensitive mechanisms that regulate CAR T-
cell activation and killing process to improve the CAR T-cell efficacy. Based on the new insights from CAR T-cell
mechanobiology, we aim to engineer a remote “mechanical switch” and incorporate a “mechanical promoter” to
effectively control CAR T-cell activation and cytotoxicity for improved CAR T-cell immunotherapy efficacy and
safety. Altogether, we propose an innovative framework to precisely map the spatiotemporal immunological and
biomechanical dynamics during CAR T-cell activation and killing, aiming to construct ex vivo leukemic BM niche
and mechanical signature of CAR T-cells, ultimately optimize CAR T-cell administration, safety, and efficacy.
项目概要
我的长期职业目标是开发可加速癌症研究的转化技术
从实验室到临床的发现对临床试验和患者管理产生真正的影响。
当前的研究利用生物材料、微系统和生物制造方面的工程进展来开发新的
并改进了针对癌症生物学和免疫工程中新出现的问题的临床解决方案。
例子包括用于单细胞传感和免疫监测、胶质母细胞瘤脑肿瘤的芯片实验室系统
用于快速癌症诊断和预后的微环境建模,以及用于癌症快速诊断和预后的微机械系统
我建议以新的能力扩展我的工作。
用于现场免疫治疗患者筛查的新型工程系统的转化癌症研究。
最近 FDA 批准了针对 B 细胞的嵌合抗原受体 (CAR) T 细胞免疫疗法
CAR T 细胞疗法是治疗复发性和难治性白血病以及
然而,在许多临床试验中,CAR-T 免疫疗法的临床益处差异很大。
复发/难治性白血病试验中报告的总体患者反应仍然是不利的因素。
CAR T 细胞制造等早期步骤可能会导致不同的临床反应
治疗、CAR T 细胞耗竭和白血病生态位中的免疫抵抗,但关键要素
导致 CAR T 细胞功效变化的原因尚不完全清楚。
我们研究的目标是开发新颖的工程系统来探测和分析
CAR T 细胞的免疫学和生物力学属性,并绘制白血病 BM 生态位图以推进
目前的 CAR T 细胞免疫疗法首先,我们的目标是重建一种新型的器官型白血病 BM。
免疫生态位离体模型剖析不同B-免疫抑制机制的异质性
ALL亚型和临床前评估和优化CD19 CAR T细胞免疫治疗的疗效。其次,我们
旨在开发和整合单细胞水平的原位细胞和分子免疫表型系统和/或
在 3D 器官型设置中,以便提供可靠且准确的筛选来表征功能
最后,我们将探讨调节 CAR T 细胞的机械敏感机制。
基于 CAR T 细胞的新见解,提高 CAR T 细胞功效的细胞激活和杀伤过程。
机械生物学,我们的目标是设计一个远程“机械开关”,并结合一个“机械启动子”来
有效控制CAR T细胞活化和细胞毒性,提高CAR T细胞免疫治疗效果
总而言之,我们提出了一个创新框架来精确绘制时空免疫学和安全性。
CAR T细胞激活和杀伤过程中的生物力学动力学,旨在构建离体白血病BM生态位
和 CAR T 细胞的机械特征,最终优化 CAR T 细胞的管理、安全性和功效。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The cellular mechanobiology of aging: from biology to mechanics.
- DOI:10.1111/nyas.14529
- 发表时间:2021-05
- 期刊:
- 影响因子:5.2
- 作者:Bajpai A;Li R;Chen W
- 通讯作者:Chen W
Probing Single-Cell Mechanical Allostasis Using Ultrasound Tweezers
使用超声镊子探测单细胞机械动态平衡
- DOI:10.1007/s12195-019-00578-z
- 发表时间:2019
- 期刊:
- 影响因子:2.8
- 作者:Qian, Weiyi;Chen, Weiqiang
- 通讯作者:Chen, Weiqiang
Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip
- DOI:10.1016/j.bios.2023.115064
- 发表时间:2023-01-19
- 期刊:
- 影响因子:12.6
- 作者:Zhou,Lang;Liu,Lunan;Chen,Pengyu
- 通讯作者:Chen,Pengyu
Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1.
- DOI:10.1038/s41467-021-27874-5
- 发表时间:2022-01-26
- 期刊:
- 影响因子:16.6
- 作者:Qian W;Hadi T;Silvestro M;Ma X;Rivera CF;Bajpai A;Li R;Zhang Z;Qu H;Tellaoui RS;Corsica A;Zias AL;Garg K;Maldonado T;Ramkhelawon B;Chen W
- 通讯作者:Chen W
A Computational Model of Cytokine Release Syndrome during CAR T‐Cell Therapy
CAR T 细胞治疗过程中细胞因子释放综合征的计算模型
- DOI:10.1002/adtp.202200130
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Zhang, Zhuoyu;Liu, Lunan;Ma, Chao;Chen, Weiqiang
- 通讯作者:Chen, Weiqiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiqiang Chen其他文献
Weiqiang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiqiang Chen', 18)}}的其他基金
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10618399 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10579393 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10218668 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10293610 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Dissecting and engineering CAR T-cell function for optimized Immunotherapy
剖析和设计 CAR T 细胞功能以优化免疫治疗
- 批准号:
10451526 - 财政年份:2019
- 资助金额:
$ 34.27万 - 项目类别:
Dissecting and engineering CAR T-cell function for optimized Immunotherapy
剖析和设计 CAR T 细胞功能以优化免疫治疗
- 批准号:
10166883 - 财政年份:2019
- 资助金额:
$ 34.27万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Role of a latent OriLyt RNA in KSHV latency in primary effusion lymphoma
潜伏 OriLyt RNA 在原发性渗出性淋巴瘤 KSHV 潜伏期中的作用
- 批准号:
10761865 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
SYK and ZAP70 kinases in lymphocyte selection
SYK 和 ZAP70 激酶在淋巴细胞选择中的作用
- 批准号:
10557882 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
The role of inflammation in driving leukemogenesis in germline predisposition syndromes
炎症在驱动种系易感综合征中白血病发生中的作用
- 批准号:
10908063 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别: