Dissecting and engineering CAR T-cell function for optimized Immunotherapy
剖析和设计 CAR T 细胞功能以优化免疫治疗
基本信息
- 批准号:10657478
- 负责人:
- 金额:$ 34.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationB lymphoid malignancyB-Cell Acute Lymphoblastic LeukemiaBiocompatible MaterialsBiomanufacturingBiomechanicsBone MarrowBrain GlioblastomaCAR T cell therapyCD19 geneCancer BiologyCancer PrognosisCell physiologyCellsChildChildhood Precursor B Lymphoblastic LeukemiaClinicClinicalClinical TrialsDevelopmentElementsEngineeringGoalsHeterogeneityImmuneImmunityImmunologic MonitoringImmunologicsImmunophenotypingImmunosuppressionImmunotherapeutic agentImmunotherapyIn SituLab On A ChipMalignant Bone Marrow NeoplasmMapsMechanicsModelingMolecularPatientsProcessRefractoryRelapseReportingResearchSafetySiteSolid NeoplasmSystemT-Cell ActivationTechnologyVariantWorkanticancer researchcancer diagnosiscareerchimeric antigen receptorchimeric antigen receptor T cellscytotoxicityexhaustionfunctional statusimmune resistanceimmunoengineeringimprovedinnovationinsightleukemiamanufacturemicrosystemsnovelpatient responsepatient screeningpre-clinicalpromoterresponsescreeningspatiotemporalstemtranslational cancer researchtumor microenvironment
项目摘要
PROJECT SUMMARY
My long-term career goal is to develop translational technologies for cancer research that can accelerate
discoveries from the benchtop to the clinic to make a real impact on clinical trials and patient management. My
current research leverages engineering advances in biomaterials, microsystems, and biomanufacturing for new
and improved clinical solutions to emerging problems in cancer biology and immune engineering. Specific
examples include lab-on-a-chip systems for single-cell sensing and immunomonitoring, glioblastoma brain tumor
microenvironment modeling for rapid cancer diagnosis and prognosis, and micromechanical systems for
exploring stem and immune cell mechanobiology. I proposes to expand on my work in new capacity in
translational cancer research for novel engineering systems for on-site immunotherapeutic patient screening.
With the recent FDA approval of chimeric antigen receptor (CAR) T-cell immunotherapies for B-cell
malignancies, CAR T-cell therapies are a promising strategy to cure relapsed and refractory leukemia as well as
solid tumors. However, the clinical benefit of CAR-T immunotherapy varies tremendously in many clinical trials
and overall patient responses reported in trials of relapsed/refractory leukemia remain unfavorable. Factors that
contribute to variable clinical responses may arise from early steps like CAR T-cell manufacturing or
administration, CAR T-cell exhaustion and immunological resistance in the leukemic niche, but the key elements
leading to variations in CAR T-cell efficacy are not fully understood.
The objective of our research is to develop novel engineering systems to probe and analyze both the
immunological and biomechanical attributes of CAR T-cells and map the leukemic BM niche for advancing
current CAR T-cell immunotherapies. First of all, we aim to reconstruct a novel organotypic leukemic BM
immunity niche ex vivo model to dissect the heterogeneity of immunosuppression mechanisms of different B-
ALL subtypes and pre-clinically evaluate and optimize CD19 CAR T-cell immunotherapy efficacy. Secondly, we
aim to develop and integrate in situ cellular and molecular immunophenotyping systems at single-cell level and/or
in a 3D organotypic setting so as to provide a reliable and accurate screening to characterize the functional
status of CAR T-cells. Lastly, we will explore CAR T-cell mechanosensitive mechanisms that regulate CAR T-
cell activation and killing process to improve the CAR T-cell efficacy. Based on the new insights from CAR T-cell
mechanobiology, we aim to engineer a remote “mechanical switch” and incorporate a “mechanical promoter” to
effectively control CAR T-cell activation and cytotoxicity for improved CAR T-cell immunotherapy efficacy and
safety. Altogether, we propose an innovative framework to precisely map the spatiotemporal immunological and
biomechanical dynamics during CAR T-cell activation and killing, aiming to construct ex vivo leukemic BM niche
and mechanical signature of CAR T-cells, ultimately optimize CAR T-cell administration, safety, and efficacy.
项目摘要
我的长期职业目标是开发可以加速癌症研究的转化技术
从台式机到诊所的发现,对临床试验和患者管理产生真正的影响。我的
当前的研究利用了生物材料,微系统和生物制造的工程进步
并改善了癌症生物学和免疫工程新兴问题的临床解决方案。具体的
示例包括用于单细胞感应和免疫监测的实验室芯片系统,胶质母细胞瘤脑肿瘤
用于快速癌症诊断和预后的微环境建模以及微机械系统
探索茎和免疫球机制。我提议以新的能力扩展我的工作
用于现场免疫治疗患者筛查的新型工程系统的转化癌症研究。
随着FDA最近批准B细胞的嵌合抗原受体(CAR)T细胞免疫疗法
恶性,汽车T细胞疗法是治愈继电器和难治性白血病的有前途的策略
实体瘤。但是,在许多临床试验中,CAR-T免疫疗法的临床益处差异很大
继电器/难治性白血病试验中报告的总体患者反应仍然不利。因素
可能会造成可变临床反应的贡献,例如汽车T细胞制造或
在白血病利基市场中给药,汽车T细胞耗尽和免疫耐药性,但是关键要素
导致汽车T细胞效率的变化尚不完全了解。
我们研究的目的是开发新型的工程系统,以探测和分析
汽车T细胞的免疫和生物力学属性,并映射白血病BM利基市场
当前的汽车T细胞免疫疗法。首先,我们旨在重建一种新型的有机白血病BM
免疫利基离体模型剖析了不同B-的免疫抑制机制的异质性
所有亚型和临时评估和优化CD19 CAR T细胞免疫疗法有效性的有效性。其次,我们
旨在在单细胞水平和/或
在3D有机设置中,以提供可靠,准确的筛选以表征功能
汽车T细胞的状态。最后,我们将探索调节汽车T-的汽车T细胞机制
细胞激活和杀戮过程,以提高汽车T细胞效率。根据汽车T细胞的新见解
机械生物学,我们旨在设计一个远程“机械开关”,并将“机械启动器”结合到
有效控制汽车T细胞激活和细胞毒性,以改善CAR T细胞免疫疗法的有效性和
安全。总之,我们提出了一个创新的框架,以精确绘制时空免疫学和
汽车T细胞激活和杀戮过程中的生物力学动力学,旨在构建体内白血病BM利基市场
汽车T细胞的机械特征,最终优化了T细胞给药,安全性和效率。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The cellular mechanobiology of aging: from biology to mechanics.
- DOI:10.1111/nyas.14529
- 发表时间:2021-05
- 期刊:
- 影响因子:5.2
- 作者:Bajpai A;Li R;Chen W
- 通讯作者:Chen W
Probing Single-Cell Mechanical Allostasis Using Ultrasound Tweezers
使用超声镊子探测单细胞机械动态平衡
- DOI:10.1007/s12195-019-00578-z
- 发表时间:2019
- 期刊:
- 影响因子:2.8
- 作者:Qian, Weiyi;Chen, Weiqiang
- 通讯作者:Chen, Weiqiang
Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip
- DOI:10.1016/j.bios.2023.115064
- 发表时间:2023-01-19
- 期刊:
- 影响因子:12.6
- 作者:Zhou,Lang;Liu,Lunan;Chen,Pengyu
- 通讯作者:Chen,Pengyu
Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1.
- DOI:10.1038/s41467-021-27874-5
- 发表时间:2022-01-26
- 期刊:
- 影响因子:16.6
- 作者:Qian W;Hadi T;Silvestro M;Ma X;Rivera CF;Bajpai A;Li R;Zhang Z;Qu H;Tellaoui RS;Corsica A;Zias AL;Garg K;Maldonado T;Ramkhelawon B;Chen W
- 通讯作者:Chen W
A Computational Model of Cytokine Release Syndrome during CAR T‐Cell Therapy
CAR T 细胞治疗过程中细胞因子释放综合征的计算模型
- DOI:10.1002/adtp.202200130
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Zhang, Zhuoyu;Liu, Lunan;Ma, Chao;Chen, Weiqiang
- 通讯作者:Chen, Weiqiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiqiang Chen其他文献
Weiqiang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiqiang Chen', 18)}}的其他基金
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10579393 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10618399 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10218668 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Molecular regulatory mechanism of Zika virus-induced intracranial calcifications
寨卡病毒诱导颅内钙化的分子调控机制
- 批准号:
10293610 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Dissecting and engineering CAR T-cell function for optimized Immunotherapy
剖析和设计 CAR T 细胞功能以优化免疫治疗
- 批准号:
10451526 - 财政年份:2019
- 资助金额:
$ 34.27万 - 项目类别:
Dissecting and engineering CAR T-cell function for optimized Immunotherapy
剖析和设计 CAR T 细胞功能以优化免疫治疗
- 批准号:
10166883 - 财政年份:2019
- 资助金额:
$ 34.27万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Role of a latent OriLyt RNA in KSHV latency in primary effusion lymphoma
潜伏 OriLyt RNA 在原发性渗出性淋巴瘤 KSHV 潜伏期中的作用
- 批准号:
10761865 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
SYK and ZAP70 kinases in lymphocyte selection
SYK 和 ZAP70 激酶在淋巴细胞选择中的作用
- 批准号:
10557882 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
The role of inflammation in driving leukemogenesis in germline predisposition syndromes
炎症在驱动种系易感综合征中白血病发生中的作用
- 批准号:
10908063 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Functional Consequences of Ubiquitin Depletion During B Lymphocyte Differentiation
B 淋巴细胞分化过程中泛素耗竭的功能后果
- 批准号:
10684125 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别: