Structural systems biology of microenvironmental oxidative stress and synthetic biology intervention
微环境氧化应激的结构系统生物学与合成生物学干预
基本信息
- 批准号:10715112
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgingBacteriaBindingBiochemical PathwayBiological AssayCellsCellular StressConserved SequenceData AnalysesDevelopmentDiagnosisDiagnosticDiseaseEngineeringEnvironmental ImpactEscherichia coliFoundationsFunctional disorderFutureGlyceraldehyde-3-Phosphate DehydrogenasesHumanIn VitroInterventionLeadMachine LearningMetabolicMetabolic dysfunctionMetabolismMitochondrial ProteinsModelingMolecularMolecular and Cellular BiologyOrganismOutcomeOuter Mitochondrial MembraneOxidation-ReductionOxidative StressPhenotypePropertyProtein EngineeringProteinsProteomeProteomicsRadiation ToxicityReactive Oxygen SpeciesRecombinantsResearchResistanceResolutionSiteStressStructure-Activity RelationshipSystems BiologyTechnologyTestingTheoretical modelTherapeuticVariantWorkbiological systemsdesignenzyme activitygenome-widehuman diseaseinterestmetabolomicsmitochondrial dysfunctionmitochondrial membranemolecular modelingoxidationoxidative damageprotein functionprotein structureprotein structure functionrational designreconstructionsimulationsynthetic biologytherapeutic development
项目摘要
ABSTRACT
I seek to characterize proteomic and fundamental molecular properties of bacteria and human cells under
oxidative stress as a means to understand mechanistic underpinnings of sensitivity phenotypes.
1) Oxidative stress broadly impacts protein function, but it is very challenging to experimentally determine
which protein malfunctions lead to cellular stress phenotypes. I propose a structural systems biology approach
to answering these questions for induced stress in E. coli and human cells. Genome-scale metabolic network
reconstruction will be integrated with solved and modeled protein structures to enable detailed models of
proteomic oxidative damage and its impact on cellular metabolism, permitting stress simulations and prediction
of metabolic bottlenecks. Predicted stress phenotypes will be validated by proteomics, metabolomics, and
targeted in vitro enzyme activity assays under oxidative stress. This approach will reveal protein targets to
inform future efforts in diagnosing and treating oxidative-stress-associated conditions including radiation
toxicity, metabolic dysfunction, and aging.
2) I will develop a theoretical model of molecular sensitivity to oxidative damage of generic proteins of interest
and serve for design and engineering more robust variants. Redox proteomics can identify oxidation sites at
residue resolution on specific proteins or proteome-wide. Analysis of this data in the context of 3D protein
structures will uncover molecular properties rendering some sites and proteins more vulnerable than others. I
will validate the model in the context of mammalian glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
which aggregates on the mitochondrial membrane causing dysfunction under oxidative stress. I will combine
the model for molecular vulnerability to oxidation with evolutionary sequence conservation analysis to design
oxidation-robust GAPDH variants. These designs will be experimentally characterized through recombinantly
expressed proteins and cell-based assays for enzyme activity, oxidation states, and phenotypic outcomes
under stress. Results will have implications for human diseases related to GAPDH dysfunction and will serve
as a foundation for rational design of stress-resistant proteins, a significant technological advance.
3) I will investigate the functionality of specialized intrinsically disordered proteins (IDPs) for cellular protection
against oxidative stress. Exploiting the model case of GAPDH oxidation again, here I will not alter GAPDH
itself but introduce synthetic IDPs engineered to target the mitochondrial outer membrane or GAPDH directly
through molecular interactions. Some IDPs are known to form protective barriers to reactive oxygen species
(ROS) or disaggregate proteins, and I will investigate whether these can serve to protect GAPDH under stress.
Designs will be tested on purified GAPDH in enzymatic activity assays and in cell-based assays for
mitochondrial dysfunction and protein oxidation. This work would further the fundamental understanding of
IDP function and lay groundwork for therapeutic development.
抽象的
我试图描述细菌和人类细胞的蛋白质组学和基本分子特性
氧化应激作为了解敏感性表型的机制基础的一种手段。
1)氧化应激广泛影响蛋白质功能,但通过实验确定非常具有挑战性
哪些蛋白质功能失常会导致细胞应激表型。我提出了一种结构系统生物学方法
回答这些关于大肠杆菌和人类细胞中诱导应激的问题。基因组规模的代谢网络
重建将与已解决和建模的蛋白质结构相结合,以实现详细的模型
蛋白质组氧化损伤及其对细胞代谢的影响,允许压力模拟和预测
的代谢瓶颈。预测的应激表型将通过蛋白质组学、代谢组学和
氧化应激下的靶向体外酶活性测定。这种方法将揭示蛋白质靶标
为未来诊断和治疗氧化应激相关疾病(包括辐射)的努力提供信息
毒性、代谢功能障碍和衰老。
2) 我将开发一个关于目标通用蛋白质氧化损伤的分子敏感性的理论模型
并用于设计和工程更强大的变体。氧化还原蛋白质组学可以识别氧化位点
特定蛋白质或蛋白质组范围内的残基分辨率。在 3D 蛋白质背景下分析此数据
结构将揭示分子特性,使某些位点和蛋白质比其他位点和蛋白质更容易受到攻击。我
将在哺乳动物甘油醛-3-磷酸脱氢酶 (GAPDH) 的背景下验证模型,
它聚集在线粒体膜上,导致氧化应激下功能障碍。我会结合
通过进化序列保守分析来设计分子氧化脆弱性模型
抗氧化的 GAPDH 变体。这些设计将通过重组进行实验表征
表达的蛋白质和基于细胞的酶活性、氧化态和表型结果测定
在压力下。结果将对与 GAPDH 功能障碍相关的人类疾病产生影响,并将有助于
作为合理设计抗应激蛋白的基础,这是一项重大的技术进步。
3) 我将研究专门的本质无序蛋白 (IDP) 的细胞保护功能
对抗氧化应激。再次利用GAPDH氧化的模型案例,这里我不会改变GAPDH
本身,但引入了人工合成的 IDP,旨在直接靶向线粒体外膜或 GAPDH
通过分子相互作用。已知一些国内流离失所者会对活性氧形成保护屏障
(ROS)或分解蛋白质,我将研究这些是否可以在压力下保护 GAPDH。
设计将在酶活性测定和基于细胞的测定中对纯化的 GAPDH 进行测试
线粒体功能障碍和蛋白质氧化。这项工作将进一步加深对
IDP 发挥作用并为治疗发展奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER LARKEN CHANG其他文献
ROGER LARKEN CHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
湿热老化下的CFRP胶-螺连接结构疲劳失效机理研究
- 批准号:52305160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10612835 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Defining a novel mechanism of adhesion present in multiple infective endocarditis causing species
定义多种感染性心内膜炎引起物种中存在的新粘连机制
- 批准号:
10598825 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Developing a microphysiological system of a humanized Gut-Brain-Axis for age-associated transmissible neuropathologies
开发人性化肠脑轴的微生理系统,用于与年龄相关的传染性神经病理学
- 批准号:
10450941 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10366359 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Developing a Microphysiological System of a Humanized Gut-Brain-Axis for Ageassociated Transmissible Neuropathologies
开发用于与年龄相关的传染性神经病理学的人性化肠脑轴的微生理系统
- 批准号:
10764159 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别: