Mechanistic Characterization of the Replication Stress Response
复制压力响应的机制表征
基本信息
- 批准号:10715216
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:Cell LineCellsCharacteristicsChromatinComplexDNADNA DamageDNA RepairDNA biosynthesisDNA replication forkDNA-Directed DNA PolymeraseData SetDefectDevelopmentDiseaseDoseEnzymesExposure toGenesGeneticGenomeGenome StabilityGenomic InstabilityGrantLinkMaintenanceMalignant NeoplasmsMolecularMutationNucleotide BiosynthesisOrganismPathogenesisPathway interactionsPostdoctoral FellowProcessRNARNA BindingRNA HelicaseRegulationResearch Project GrantsResourcesRoleSS DNA BPSingle-Stranded DNASourceUntranslated RNAWorkassaultbiochemical toolsbiological adaptation to stresscancer therapyimprovedinsightnovelnovel therapeutic interventionrepairedreplication stressresponserestorationwhole genome
项目摘要
PROJECT SUMMARY
Accurate DNA replication is a fundamental process that governs the survival of every organism.
Cellular DNA is under constant assault from various sources. The cellular replication machinery
frequently encounters and is severely vulnerable to agents that stall its advancement, leading to
replicative errors, development of mutations, and various forms of genetic instability. As a result
of this, elevated levels of replication stress is a characteristic hallmark of various disease
conditions. It is therefore critical to understand in molecular detail the varied mechanisms by
which cells respond to and adequately repair damaged DNA during replication stress. Although
we know a lot about how breaks in DNA are repaired, there is a major gap in our understanding
of how cells adequately respond to replication stress in part due to the lack of genetic and
biochemical tools to probe these processes. To gain further insights into the processes involved
in the replication stress response, and in order to identify and characterize the panoply of genes
required for this pathway, during my postdoc I performed whole genome screens in multiple cell
lines following perturbations with low doses of replication stress-inducing agents. From these
screens I generated a novel dataset that includes multiple genes that have yet to be linked with
genome instability. Several newly identified genes were linked to chromatin responses,
replication fork maintenance pathways, regulation of nucleotide biosynthesis and others. Of
note, I identified the Protexin complex, consisting of the single stranded DNA binding protein
SCAI and the DNA polymerase REV3. Protexin was critical for maintaining genomic instability
by regulating single stranded DNA accumulation through unknown mechanisms. These screens
also revealed a striking role for RNA dependent processes in the replication stress response, a
novel layer of regulation that had not been appreciated before now. Among our top hits, we
identified several novel RNA helicases and RNA-binding factors, as well as several non-coding
RNA molecules, demonstrating a crucial, intimate link between RNA-dependent processes and
adequate maintenance of genome stability. My lab will take advantage of this vast resource of
newly identified factors to characterize novel genome maintenance mechanisms. Investigating
these novel factors will allow us to decipher in detail the concerted, multi-layered repair
response and fork restoration control upon exposure to DNA damage. We will (1) characterize
the mechanism of single stranded accumulation following replication stress. 2) Identify
mechanisms by which RNA-modifying enzymes function in the replication stress response, and
3) elucidate roles for non-coding RNA genes during the replication stress Response.
Completion of these research projects will grant us significant and fundamental novel insights
into how cellular genomes are maintained in the face of damaging insults, grant us improved
mechanistic understanding of the principles of cancer pathogenesis in greater detail and open
up novel avenues for exploiting defective DNA repair processes in the treatment of cancers.
项目概要
准确的 DNA 复制是控制每个生物体生存的基本过程。
细胞 DNA 不断受到来自各种来源的攻击。细胞复制机器
经常遇到并且非常容易受到阻碍其前进的代理的影响,从而导致
复制错误、突变的发生以及各种形式的遗传不稳定性。因此
其中,复制应激水平升高是各种疾病的特征标志
状况。因此,从分子细节上理解不同的机制至关重要
哪些细胞在复制应激过程中对受损的 DNA 做出反应并充分修复。虽然
我们对 DNA 断裂如何修复了解很多,但我们的理解存在重大差距
细胞如何充分应对复制压力,部分原因是缺乏遗传和
生化工具来探测这些过程。为了进一步了解所涉及的流程
在复制应激反应中,以及为了识别和表征全部基因
该途径所需的,在我的博士后期间,我在多个细胞中进行了全基因组筛选
用低剂量的复制应激诱导剂扰动后的细胞系。从这些
我生成了一个新颖的数据集,其中包含尚未链接的多个基因
基因组不稳定。几个新发现的基因与染色质反应有关,
复制叉维持途径、核苷酸生物合成的调节等。的
注意,我鉴定出了 Protexin 复合物,由单链 DNA 结合蛋白组成
SCAI 和 DNA 聚合酶 REV3。蛋白质对于维持基因组稳定性至关重要
通过未知机制调节单链 DNA 积累。这些屏幕
还揭示了 RNA 依赖性过程在复制应激反应中的显着作用,
以前从未受到重视的新颖监管层。在我们的热门歌曲中,我们
鉴定了几种新型 RNA 解旋酶和 RNA 结合因子,以及几种非编码
RNA 分子,证明了 RNA 依赖性过程和
充分维持基因组稳定性。我的实验室将利用这一巨大的资源
新发现的因素来表征新的基因组维护机制。调查中
这些新颖的因素将使我们能够详细解读协调一致的多层修复
暴露于 DNA 损伤时的反应和分叉恢复控制。我们将 (1) 描述
复制应激后单链积累的机制。 2)识别
RNA修饰酶在复制应激反应中发挥作用的机制,以及
3) 阐明非编码RNA基因在复制应激反应过程中的作用。
完成这些研究项目将为我们带来重要且基本的新颖见解
研究细胞基因组在面对破坏性侮辱时如何维持,让我们改进
更详细和开放地了解癌症发病机制的机制
为利用有缺陷的 DNA 修复过程治疗癌症开辟新途径。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RADIF(C1orf112)-FIGNL1 Complex Regulates RAD51 Chromatin Association to Promote Viability After Replication Stress.
RADIF(C1orf112)-FIGNL1 复合物调节 RAD51 染色质关联以促进复制应激后的活力。
- DOI:
- 发表时间:2023-09-25
- 期刊:
- 影响因子:0
- 作者:Tischler, Jessica D;Tsuchida, Hiroshi;Oda, Tommy T;Park, Ana;Adeyemi, Richard O
- 通讯作者:Adeyemi, Richard O
Expansion of human centromeric arrays in cells undergoing break-induced replication.
人类着丝粒阵列在经历断裂诱导复制的细胞中的扩展。
- DOI:
- 发表时间:2023-11-15
- 期刊:
- 影响因子:0
- 作者:Showman, Soyeon;Talbert, Paul B;Xu, Yiling;Adeyemi, Richard O;Henikoff, Steven
- 通讯作者:Henikoff, Steven
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Adeyemi其他文献
Richard Adeyemi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
系统性红斑狼疮粒-单核-树突细胞系中PLSCR1介导的I型干扰素诱导表达特征及调控机制研究
- 批准号:82300805
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期肝细胞癌预后亚型的多维组学特征及亚型相关的细胞系鉴定
- 批准号:81602738
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
混合系列急性白血病分子遗传学特征及MEF2C基因致白血病机制研究
- 批准号:81270617
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
t(16;21)(p11;q22)/FUS-ERG融合基因相关急性白血病的生物学特征及发病机制研究
- 批准号:81070416
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
不同亚单位重组NMDA受体表达细胞系库的建立及应用研究
- 批准号:39970844
- 批准年份:1999
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
PREVENT Preclinical Drug Development Program: Preclinical Efficacy and Intermediate BiomarkersTask Order Title: Sulforaphane for the Prevention of Malignant Mesothelioma
PREVENT 临床前药物开发计划:临床前功效和中间生物标志物任务单标题:萝卜硫素用于预防恶性间皮瘤
- 批准号:
10836806 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Uncovering the Role of RNA Modifications in the Paraspeckle
揭示 RNA 修饰在副斑斑中的作用
- 批准号:
10679290 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Multimodal profiling of microglia during HIV infection and substance use disorder
HIV 感染和物质使用障碍期间小胶质细胞的多模式分析
- 批准号:
10813965 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Methamphetamine, HIV integration and latency in the brain
甲基苯丙胺、艾滋病毒整合和大脑潜伏期
- 批准号:
10814672 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别: