Microfluidic Systems to Enable Enzyme Engineering for Chemical Synthesis
微流体系统使酶工程能够用于化学合成
基本信息
- 批准号:10715356
- 负责人:
- 金额:$ 47.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAchievementAmino AcidsAwardCellsChemical EngineeringChromatographyClinical TrialsComplexCouplingCytochrome P450DNADetectionDevelopmentEncapsulatedEngineeringEnzymesEscherichia coliEvaluationEvolutionFluorescenceGenetic TranscriptionGoalsIn VitroIncubatedIndividualIndustrializationInvestigationIsomerismLabelLeadManufacturerMass Spectrum AnalysisMeasurementMediatingMedicalMedicineMetalsMethodsMicrobeMicrofluidicsMiniaturizationMutationNobel PrizePharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePreparationProcessProductionProtocols documentationPyridoxal PhosphateReactionResourcesRhodiumRoboticsSamplingSignal TransductionSortingSpectrometry, Mass, Electrospray IonizationSpeedStructure-Activity RelationshipSystemTechnologyTestingTimeToxic effectTranslationsVariantWorkYeastsadvanced analyticscatalystcellular engineeringchemical synthesiscostdrug synthesisexperimental studyfunctional groupimprovedion mobilityionizationliquid chromatography mass spectrometrynanolitrenovelscreeningtooluptake
项目摘要
PROJECT SUMMARY
The overall objective of this work is to develop and apply a droplet microfluidic system to facilitate rapid
engineering of enzymes to synthesize drug molecules. Development of new medicines requires synthesis of
complex molecules from initial lead compounds for testing. Once a drug is identified, efficient synthesis is
needed for clinical trials and ultimately widespread production. Traditionally such syntheses utilize metal-based
catalysts. Enzyme and cell-based systems offer numerous potential advantages including greater selectivity in
installing functional groups, greener reactions, more efficient catalysts, and low toxicity. Creating biocatalysts
with the desired selectivity requires enzyme engineering. The potential of enzyme engineering is seen in the
awarding of a Nobel Prize in 2018 and uptake by pharmaceutical manufacturers. Enzyme engineering requires
creation and isolation of thousands of enzyme variants, incubation of substrates with variants, screening of the
variants for reaction activity, and identification of variants for further mutation and evolution. Current methods
for engineering that use robotics, well plates, and liquid chromatography-mass spectrometry are time and
resource intensive thus limiting the use in medicinal chemistry. Droplet microfluidics has potential to profoundly
improve enzyme engineering through greater speed and substantially reduced materials requirements. In
these methods, individual enzyme variants are encapsulated into droplets, screened for product formation, and
sorted based on signal. The low volumes required (< 10 nL/reaction) and high-throughput (over 1000
samples/s) are dramatic improvements over current well-plate methods. However, early demonstrations of
enzyme engineering by droplet microfluidics are impractical for development of biocatalysts due to a reliance
on fluorescence detection in screening. We propose to create droplet microfluidic enzyme engineering systems
that utilize mass spectrometry (MS)-based detection, offering the potential for label-free and information-rich
screens at high throughput. In preliminary work, we have developed “mass-activated droplet sorting” (MADS)
which can sort enzymes expressed in vitro based on their activity detected by MS. We will build on this
achievement to create a versatile system with advanced analytical measurements for enzyme engineering.
Many enzyme engineering protocols call for expressing the variants in microbes, therefore we will
develop tools to allow individual microbe strains to be grown in single droplets and sorted by MS. Prior work
has relied on direct analysis of droplets by MS; however, this precludes separations of isomers and can be
vulnerable to matrix effects on signal. We will expand analytical options by interfacing droplets to rapid LC-MS
and ion mobility-MS to offer separations of isomers and matrix before MS detection. The system will be used to
engineer pyridoxal phosphate-dependent enzymes for the diversification of amino acid substrates and
cytochrome P450s that mediate intermolecular oxidative C–H/C–H coupling reactions to form C–C bonds.
项目概要
这项工作的总体目标是开发和应用液滴微流控系统以促进快速
酶工程合成药物分子的开发需要合成
一旦确定了药物,就可以从最初的先导化合物中提取复杂的分子进行测试。
传统上,此类合成利用金属基材料进行临床试验和最终广泛生产。
酶和基于细胞的系统提供了许多潜在的优势,包括更高的选择性。
安装官能团、更环保的反应、更高效的催化剂以及低毒性的生物催化剂。
具有所需的选择性需要酶工程酶工程的潜力可见于。
2018 年诺贝尔奖的颁发和制药制造商的采用需要酶工程。
创建和分离数千种酶变体、用变体孵育底物、筛选
反应活性的变体以及进一步突变和进化的鉴定当前方法。
对于使用机器人技术、孔板和液相色谱-质谱分析的工程来说,时间和
资源密集,从而限制了液滴微流控技术的应用。
通过提高速度和大幅减少材料需求来改进酶工程。
这些方法将单个酶变体封装到液滴中,筛选产物形成,并
根据信号进行排序。所需体积低(< 10 nL/反应)和高通量(超过 1000)。
样本/秒)比当前的孔板方法有了显着的改进,但是,早期的演示。
由于依赖,通过液滴微流体进行酶工程对于生物催化剂的开发是不切实际的
我们建议创建液滴微流控酶工程系统。
利用基于质谱 (MS) 的检测,提供无标记和信息丰富的潜力
在前期工作中,我们开发了“质量激活液滴分选”(MADS)。
它可以根据 MS 检测到的酶活性对体外表达的酶进行分类。
成就为酶工程创建了具有先进分析测量的多功能系统。
许多酶工程方案要求在微生物中表达变体,因此我们将
开发工具以允许单个微生物菌株在单液滴中生长并通过 MS 进行分类。
依赖于通过 MS 对液滴进行直接分析;然而,这排除了异构体的分离,并且可以
我们将通过将液滴与快速 LC-MS 连接来扩展分析选项。
和离子淌度 MS,在 MS 检测之前提供异构体和基质的分离。
设计吡哆醛磷酸盐依赖性酶以实现氨基酸底物的多样化和
细胞色素 P450 介导分子间氧化 C-H/C-H 偶联反应以形成 C-C 键。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mass-Activated Droplet Sorting for the Selection of Lysine-Producing Escherichia coli.
用于选择产生赖氨酸的大肠杆菌的质量激活液滴分选。
- DOI:10.1021/acs.analchem.3c03080
- 发表时间:2023-10-11
- 期刊:
- 影响因子:7.4
- 作者:Emory M. Payne;Bridget E Murray;Laura I Penabad;Eric Abbate;R. T. Kennedy
- 通讯作者:R. T. Kennedy
High-Throughput Liquid Chromatographic Analysis Using a Segmented Flow Injector with a 1 s Cycle Time.
使用循环时间为 1 秒的分段流动注射器进行高通量液相色谱分析。
- DOI:
- 发表时间:2023-11-21
- 期刊:
- 影响因子:7.4
- 作者:Makey, Devin M;Diehl, Roger C;Xin, Yue;Murray, Bridget E;Stoll, Dwight R;Ruotolo, Brandon T;Grinias, James P;Narayan, Alison R H;Lopez;Stark, Michaela;Johnen, Philipp;Kennedy, Robert T
- 通讯作者:Kennedy, Robert T
High-Throughput Capillary Liquid Chromatography Using a Droplet Injection and Application to Reaction Screening.
使用液滴注射的高通量毛细管液相色谱及其在反应筛选中的应用。
- DOI:
- 发表时间:2024-03-19
- 期刊:
- 影响因子:7.4
- 作者:Xin, Yue;Foster, Samuel W;Makey, Devin M;Parker, Deklin;Bradow, James;Wang, Xiaochun;Berritt, Simon;Mongillo, Robert;Grinias, James P;Kennedy, Robert T
- 通讯作者:Kennedy, Robert T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT T KENNEDY其他文献
ROBERT T KENNEDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT T KENNEDY', 18)}}的其他基金
New Technology for In Vivo Monitoring the Brain Extracellular Proteome at High Spatial Resolution in Substance Abuse Models
在药物滥用模型中以高空间分辨率体内监测脑细胞外蛋白质组的新技术
- 批准号:
10584195 - 财政年份:2023
- 资助金额:
$ 47.32万 - 项目类别:
Deep Analysis of Brain Chemistry at Enhanced Spatial and Temporal Resolution using Microscale Sampling and Analysis
使用微尺度采样和分析以增强的时空分辨率深入分析脑化学
- 批准号:
10515445 - 财政年份:2022
- 资助金额:
$ 47.32万 - 项目类别:
High throughput mass spectrometry and electrophoresis assay systems
高通量质谱和电泳分析系统
- 批准号:
8340559 - 财政年份:2012
- 资助金额:
$ 47.32万 - 项目类别:
High throughput mass spectrometry and electrophoresis assay systems
高通量质谱和电泳分析系统
- 批准号:
8545872 - 财政年份:2012
- 资助金额:
$ 47.32万 - 项目类别:
High throughput mass spectrometry and electrophoresis assay systems
高通量质谱和电泳分析系统
- 批准号:
8925093 - 财政年份:2012
- 资助金额:
$ 47.32万 - 项目类别:
Design and use of methods for peptide secretion studies
肽分泌研究方法的设计和使用
- 批准号:
8010457 - 财政年份:2010
- 资助金额:
$ 47.32万 - 项目类别:
Microfluidics in Biomedical Sciences Training Program
生物医学科学中的微流控培训计划
- 批准号:
7673493 - 财政年份:2005
- 资助金额:
$ 47.32万 - 项目类别:
Microfluidics in Biomedical Sciences Training Program
生物医学科学中的微流控培训计划
- 批准号:
7944375 - 财政年份:2005
- 资助金额:
$ 47.32万 - 项目类别:
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
相似海外基金
Development of a Urine Test for At-Home Monitoring of Blood Phe Levels for PKU
开发用于在家监测 PKU 血液 Phe 水平的尿液检测
- 批准号:
10822515 - 财政年份:2023
- 资助金额:
$ 47.32万 - 项目类别:
Defining and targeting the PAX3-FOXO1 interactome
定义和定位 PAX3-FOXO1 相互作用组
- 批准号:
10902753 - 财政年份:2023
- 资助金额:
$ 47.32万 - 项目类别:
The effect of the maternal plasma and breastmilk metabolome on the infant gut microbiome and growth
母体血浆和母乳代谢组对婴儿肠道微生物组和生长的影响
- 批准号:
10754737 - 财政年份:2023
- 资助金额:
$ 47.32万 - 项目类别:
Novel Sample Introduction Methodologies for Molecular Rotational Resonance (MRR) Spectroscopy
分子旋转共振 (MRR) 光谱的新样品引入方法
- 批准号:
10603098 - 财政年份:2023
- 资助金额:
$ 47.32万 - 项目类别: