Dysregulation of TRIO GEF1 activity in neurodevelopmental disorders
TRIO GEF1 活性在神经发育障碍中的失调
基本信息
- 批准号:10714793
- 负责人:
- 金额:$ 85.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAllelesAnxietyAxonBehavioralBindingBiochemicalBiochemical ProcessBiophysicsBiosensorBrainCellsCharacteristicsCytoplasmic ReceptorsCytoplasmic TailDefectDendritesDevelopmentDevelopmental Delay DisordersDiseaseElectron MicroscopyElectrophysiology (science)EventFamilyFluorescence Resonance Energy TransferGenesGeneticGuanine Nucleotide Exchange FactorsGuanosine Triphosphate PhosphohydrolasesHeterozygoteHistopathologyImpairmentIndividualIntellectual functioning disabilityInterruptionLeadMeasurementMeasuresMediatingModelingMolecularMorphologyMusNeurodevelopmental DisorderNeuronsPathologicPathologyPhosphorylation SitePhosphotransferasesProcessProsencephalonProteinsProteomicsReceptor ActivationRecombinant ProteinsRegulationRiskSamplingSchizophreniaSignal TransductionSignaling ProteinSocial InteractionSpectrinSymptomsSynapsesSynaptic TransmissionSynaptic plasticityTRIO geneTestingTherapeuticTranslatingVariantWild Type MouseWorkautism spectrum disorderbrain behaviorbrain sizecomparativeenzyme activityexcitatory neurongenetic risk factorgenetic variantimpaired brain developmentindividuals with autism spectrum disorderlight microscopyloss of functionmodel organismmotor impairmentneuron developmentneuronal excitabilityneurotransmissionnovel therapeutic interventionoptogeneticsphosphoproteomicsreceptorrhoschizophrenia risksuccesssynaptic functiontool
项目摘要
PROJECT SUMMARY
Genetic variants in the TRIO gene increase risk for neurodevelopmental disorders (NDDs) including
schizophrenia, autism, and related disorders. TRIO encodes a large protein with two guanine nucleotide
exchange factor (GEF) domains for Rho family GTPases: GEF1 activates Rac1 and RhoG, and GEF2 activates
RhoA. We found a cluster of variants associated with autism and intellectual disability that selectively activate or
inhibit TRIO GEF1 activity. While our findings highlight the central importance of this enzyme activity for proper
brain development, the molecular mechanisms by which TRIO GEF1 activity is regulated, the downstream
targets of TRIO GEF1 signaling, and how these processes are disrupted by GEF1-targeting variants remain
fundamental, yet unresolved questions. Answering them will reveal how variants in TRIO lead to NDDs and may
inform new therapeutic interventions. Our proposal will address these questions in three Aims:
Aim 1. To elucidate the mechanism of TRIO GEF1 activation. We discovered that spectrin repeats 6-9 in
TRIO bind and autoinhibit its GEF1 activity and that NDD-associated variants in spectrin repeat 8 relieve this
autoinhibition. A short list of receptors and kinases has been identified as known or likely TRIO GEF1 regulators,
but the mechanisms by which these activators engage TRIO to activate GEF1 activity are unclear. We will use
purified recombinant proteins to test how these receptors’ cytoplasmic domains and kinases impact TRIO GEF1
activity. We will also use a FRET-based activity biosensor and morphological measurements to reveal how these
mechanisms contribute to Rac1/RhoG activation and neuronal development induced by receptor activation.
Aim 2. To identify and characterize the neuronal signaling events regulated by TRIO GEF1 activity. We
have generated mice bearing TRIO variant alleles with reduced (K1431M) or elevated (R1078Q) TRIO GEF1
activity. We will use comparative proteomics and phospho-proteomics in samples from wild-type mice versus
those bearing TRIO GEF1-inhibiting or activating alleles to identify proteins, signaling events, and TRIO-
interaction partners impacted by changes in TRIO GEF1 activity. We will systematically test how manipulation
of these GEF1-mediated events impacts neuronal development and synaptic connectivity.
Aim 3. To measure how selective changes in TRIO GEF1 activity impact neuronal development and
synaptic transmission. Heterozygosity for the GEF1-defective TRIOK1431M allele causes reduced brain size
and behavioral defects, consistent with our hypothesis that selective alterations in TRIO GEF1 activity
compromise normal neuronal development and synaptic function. We will use quantitative histopathology and
electron microscopy in mice bearing the K1431M and R1078Q variants to reveal how altered TRIO GEF1 activity
impacts axon, dendritic arbor, and synapse development. Whole-cell electrophysiology and optogenetic
manipulation will enable us to identify the consequences of changes in TRIO GEF1 activity on neuronal
excitability, synaptic function, and circuit connectivity.
项目概要
TRIO 基因的遗传变异会增加神经发育障碍 (NDD) 的风险,包括
TRIO 编码具有两个鸟嘌呤核苷酸的大蛋白,用于精神分裂症、自闭症和相关疾病。
Rho 家族 GTPases 的交换因子 (GEF) 结构域:GEF1 激活 Rac1 和 RhoG,GEF2 激活
我们发现了一组与自闭症和智力障碍相关的变异,它们选择性地激活或
抑制 TRIO GEF1 活性,而我们的研究结果强调了这种酶活性对于正常的重要性。
大脑发育、TRIO GEF1 活性调节的分子机制、下游
TRIO GEF1 信号传导的目标,以及这些过程如何被 GEF1 靶向变体破坏仍然存在
回答这些基本但尚未解决的问题将揭示 TRIO 中的变异如何导致 NDD 并可能。
我们的建议将通过三个目标解决这些问题:
目的 1. 阐明 TRIO GEF1 激活机制 我们发现血影蛋白在 6-9 中重复。
TRIO 结合并自动抑制其 GEF1 活性,血影蛋白重复序列 8 中的 NDD 相关变体可缓解这种情况
一小部分受体和激酶已被确定为已知或可能的 TRIO GEF1 调节剂,
但我们将使用这些激活剂与 TRIO 激活 GEF1 活性的机制尚不清楚。
纯化的重组蛋白以测试这些受体的胞质结构域和激酶如何影响 TRIO GEF1
我们还将使用基于 FRET 的活性生物传感器和形态学测量来揭示这些活性。
机制有助于 Rac1/RhoG 激活和受体激活诱导的神经发育。
目标 2. 识别和表征 TRIO GEF1 活性调节的神经信号事件。
已产生携带 TRIO 变异等位基因的小鼠,其 TRIO GEF1 降低(K1431M)或升高(R1078Q)
我们将使用比较蛋白质组学和磷酸化蛋白质组学来研究野生型小鼠和野生型小鼠的样本。
那些带有 TRIO GEF1 抑制或激活等位基因的基因,用于识别蛋白质、信号事件和 TRIO-
受 TRIO GEF1 活动变化影响的互动合作伙伴 我们将系统地测试如何操纵。
这些 GEF1 介导的事件会影响神经发育和突触连接。
目标 3. 测量 TRIO GEF1 活性的选择性变化如何影响神经发育和
GEF1 缺陷 TRIOK1431M 等位基因的杂合性导致大脑尺寸减小。
和行为缺陷,与我们的假设一致,即 TRIO GEF1 活性的选择性改变
损害正常的神经发育和突触功能我们将使用定量组织病理学和
对携带 K1431M 和 R1078Q 变体的小鼠进行电子显微镜观察,揭示 TRIO GEF1 活性如何改变
影响轴突、树突轴和突触发育。
操纵将使我们能够确定 TRIO GEF1 活性变化对神经元的影响
兴奋性、突触功能和电路连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony J Koleske其他文献
Anthony J Koleske的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony J Koleske', 18)}}的其他基金
Direct binding and control of microtubule elongation by Abl2
Abl2 直接结合并控制微管伸长
- 批准号:
9978453 - 财政年份:2020
- 资助金额:
$ 85.39万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
10365989 - 财政年份:2018
- 资助金额:
$ 85.39万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
10590119 - 财政年份:2018
- 资助金额:
$ 85.39万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
10115123 - 财政年份:2018
- 资助金额:
$ 85.39万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
10373463 - 财政年份:2018
- 资助金额:
$ 85.39万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
9895869 - 财政年份:2018
- 资助金额:
$ 85.39万 - 项目类别:
Control of actin dynamics and dendritic spine stability by Arg and cortactin
Arg 和 cortactin 控制肌动蛋白动力学和树突棘稳定性
- 批准号:
8791215 - 财政年份:2014
- 资助金额:
$ 85.39万 - 项目类别:
Control of actin dynamics and dendritic spine stability by Arg and cortactin
Arg 和 cortactin 控制肌动蛋白动力学和树突棘稳定性
- 批准号:
8883739 - 财政年份:2014
- 资助金额:
$ 85.39万 - 项目类别:
Regulation of Invadopodia Formation in Breast Cancer Cells
乳腺癌细胞侵袭伪足形成的调控
- 批准号:
8241408 - 财政年份:2009
- 资助金额:
$ 85.39万 - 项目类别:
Regulation of Invadopodia Formation in Breast Cancer Cells
乳腺癌细胞侵袭伪足形成的调控
- 批准号:
8969667 - 财政年份:2009
- 资助金额:
$ 85.39万 - 项目类别:
相似国自然基金
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding A Molecular Cascade That Drives Neutrophil Mediated Pathology In Arthritis
了解驱动中性粒细胞介导的关节炎病理学的分子级联
- 批准号:
10658202 - 财政年份:2023
- 资助金额:
$ 85.39万 - 项目类别:
Radioresistant Innate Immunity in SAVI Tissue-Specific Autoinflammation
SAVI 组织特异性自身炎症中的抗辐射先天免疫
- 批准号:
10752556 - 财政年份:2023
- 资助金额:
$ 85.39万 - 项目类别:
A pro-metastatic secretory program activated by epithelial-to-mesenchymal transition
由上皮间质转化激活的促转移分泌程序
- 批准号:
10294733 - 财政年份:2021
- 资助金额:
$ 85.39万 - 项目类别:
Slit Fragments Generate Diversity in Axon Guidance Signals
狭缝片段产生轴突引导信号的多样性
- 批准号:
10052470 - 财政年份:2021
- 资助金额:
$ 85.39万 - 项目类别:
Slit Fragments Generate Diversity in Axon Guidance Signals
狭缝片段产生轴突引导信号的多样性
- 批准号:
10599239 - 财政年份:2021
- 资助金额:
$ 85.39万 - 项目类别: