Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
基本信息
- 批准号:10656387
- 负责人:
- 金额:$ 21.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
The proliferation of “black box” Machine Learning (ML) models for Clinical Decision Support (CDS) has raised
concerns regarding CDS interpretability, actionability and overall usability, rendering a critical need for a clear
process that engages various stakeholders including both developers and users in implementation planning.
Our long-term goal is to formalize a process to guide health systems in planning, monitoring and evaluating
CDS implementation. The overall objective for this R21 is to develop and evaluate a generalizable strategy
to bring multidisciplinary stakeholders together during the CDS exploration phase to identify
facilitators and barriers to implementation in their contexts. In doing so, we will use Participatory System
Dynamics (PSD) modeling as a multi-component strategy to evaluate and plan implementation with
stakeholders during the exploration phase of implementation, when decision-making occurs, in a way where
ML-enabled CDS can be sustained over time. As such, we will focus on the upstream implementation
outcomes of acceptability, appropriateness, and feasibility of ML-enabled CDS. The rationale for this project is
that a process that engages diverse stakeholders in implementation planning early on will clarify commitment
to implementation and potential for adoption by revealing acceptability, feasibility, and appropriateness. For
this project we will focus on one particular set of ML-enabled CDS: Early Warning Scores (EWSs), used to
identify decompensating patients. We plan to accomplish our overall objective by pursuing two specific aims: 1.
Engage multidisciplinary stakeholders involved in EWS implementation (users, developers, implementers,
owners) from two systematically varying adoption contexts to co-define common barriers and facilitators to key
implementation outcomes of CDS acceptability, appropriateness, and feasibility using group model building
scripts from the field of system dynamics and 2. Evaluate the PSD process by measuring change in
commitment to adopt CDS (using measures of acceptability, appropriateness, and feasibility), eliciting
feedback, and estimating intervention effort. We will obtain data via a series of group modeling sessions from
stakeholders who have used CDS in different contexts, where alerts vary by target user, time, and frequency
among other factors. We will employ well-defined scripts from the field of System Dynamics modeling to
facilitate group discussion toward developing a shared theory about the problem of ML-enabled CDS response
(Aim 1). Because implementation of any strategy requires adaptation, we will evaluate the PSD process (Aim
2) to refine and prepare for use elsewhere. This contribution is significant because EWSs are widely used
across both academic and community hospitals. This contribution is innovative by using group modeling
techniques for the problem of ML-enabled CDS implementation, creating both methodological and substantive
findings. A future R01 will prospectively assess benefits of using this process in multiple use case settings
while continuing to build out the dynamic systems model of factors for downstream adoption.
项目摘要/摘要
临床决策支持(CD)的“黑匣子”机器学习(ML)模型的扩散已提高
对CD的可解释性,可行性和整体可用性的担忧,这使人们对清晰的需求非常重要
与包括开发人员和用户在实施计划中的各种利益相关者相关的过程。
我们的长期目标是为指导卫生系统进行计划,监视和评估的过程形式化
CDS实施。 R21的总体目标是制定和评估可推广的策略
在CDS勘探阶段将多学科利益相关者召集在一起
在其背景下实施的促进者和障碍。这样,我们将使用参与系统
动态(PSD)建模是一种多组分策略,用于评估和计划实施
在实施探索阶段,利益相关者在决策时以某种方式
启用ML的CD可以随着时间的流逝而维持。因此,我们将重点关注上游实施
启用ML的CD的可接受性,适当性和可行性的结果。这个项目的理由是
该过程与潜在的利益相关者尽早参与实施计划的过程将澄清承诺
通过揭示可接受性,可行性和适当性来实施和采用潜力。为了
该项目我们将重点介绍一组启用ML的CD:预警分数(EWSS),曾经曾经
识别失代偿患者。我们计划通过追求两个具体目标来实现我们的整体目标:1。
参与参与EWS实施的多学科利益相关者(用户,开发人员,实施者,
所有者)从两个系统变化的采用环境到共同定义的共同障碍和促进者到关键
使用小组模型建设的CD可接受性,适当性和可行性的实施结果
来自系统动力学领域和2的脚本。通过测量更改来评估PSD过程
承诺采用CD(使用可接受性,适当性和可行性的度量),引起
反馈和估计干预工作。我们将通过一系列的小组建模会话获得数据
在不同情况下使用CD的利益相关者,在目标用户,时间和频率的情况下,警报会有所不同
除其他因素。我们将使用系统动态建模领域定义明确的脚本到
促进小组讨论,以发展有关启用ML的CD响应问题的共同理论
(目标1)。因为任何策略的实施都需要适应,所以我们将评估PSD流程(AIM
2)精炼并准备在其他地方使用。这种贡献很重要,因为EWS被广泛使用
在学术和社区医院中。通过使用小组建模,这种贡献是创新的
启用ML的CD实施问题的技术,创建方法论和实质性
发现。未来的R01可能会评估在多个用例设置中使用此过程的好处
在继续建立下游采用因素的动态系统模型的同时。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Benjamin Alan Gold...的其他基金
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:1045195410451954
- 财政年份:2022
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:1060524810605248
- 财政年份:2020
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:1059869310598693
- 财政年份:2020
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:1019271410192714
- 财政年份:2020
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:1041481410414814
- 财政年份:2020
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children
多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征
- 批准号:98847829884782
- 财政年份:2019
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:1069819510698195
- 财政年份:2017
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:1052340810523408
- 财政年份:2017
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:84259858425985
- 财政年份:2013
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:87256588725658
- 财政年份:2013
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:1075293010752930
- 财政年份:2024
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:1076106010761060
- 财政年份:2023
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Pericyte reprogramming in fibrosis
纤维化中的周细胞重编程
- 批准号:1057852610578526
- 财政年份:2023
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
mHealth OAE: Towards Universal Newborn Hearing Screening in Kenya (mTUNE)
mHealth OAE:迈向肯尼亚全民新生儿听力筛查 (mTUNE)
- 批准号:1073890510738905
- 财政年份:2023
- 资助金额:$ 21.01万$ 21.01万
- 项目类别:
Dissemination and implementation of DIGEST™ as an evidence-based measurement tool for dysphagia in cancer
传播和实施 DIGEST™ 作为癌症吞咽困难的循证测量工具
- 批准号:1058482410584824
- 财政年份:2023
- 资助金额:$ 21.01万$ 21.01万
- 项目类别: