Systems biology of quiescence entry
进入静止的系统生物学
基本信息
- 批准号:10661143
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnimal ModelBindingBiochemicalBiochemistryBioinformaticsBiological AssayBiological MarkersCarbonCell CycleCell Cycle ArrestCell Cycle ProgressionCell Cycle RegulationCell ProliferationCell physiologyCellsCellular StructuresCellular biologyColorComplementComputational BiologyComputing MethodologiesCore FacilityCyclic AMPCyclic AMP-Dependent Protein KinasesDNA biosynthesisDataDecision MakingDevelopmentDiseaseEnvironmentFailureFibrosisGoalsHistone AcetylationHumanImageImmunoprecipitationIn complete remissionInstitutionLabelLeadMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasuresMeiosisMentorsMetabolicMethodsMicrofluidicsMicroscopyMolecularNitrogenNuclearNutrientNutrient DepletionOrganOrganismPathway interactionsPatternPhasePhosphotransferasesPositioning AttributeProblem SolvingProcessPropertyProtein BiosynthesisProteinsPublishingReporterResearchRoleSaccharomyces cerevisiaeSignal PathwaySignal TransductionSourceStarvationStressSystems BiologyTechniquesTestingTime Series AnalysisTissuesTrainingTranscription RepressorWorkXBP1 geneanaphase-promoting complexbasebiological adaptation to stresscareercellular imagingcomputational platformcomputer frameworkdesigndetection of nutrientexperimental studyfluorescence imaginggene repressiongenetic approachimaging approachimaging systemin vivopreventresponsesingle cell analysistemporal measurementtoolyeast genetics
项目摘要
Abstract
This proposal aims to provide crucial training for the candidate’s long-term career plan to study how cellular
quiescence is established through decision-making processes. The decision to undergo quiescence in response
to stress or developmental signals is a fundamental and understudied property of living systems. Failure to
maintain quiescence can lead to cell proliferation disorders in humans, such as fibrosis or cancer.
Quiescence entry is triggered when multiple nutrient- and stress-sensing signaling pathways arrest the cell cycle
machinery. However, the molecular mechanisms that coordinate stress response pathways with the cell cycle
during quiescence remain largely unclear. This is, in part, due to the difficulties to simultaneously quantify multiple
stress pathways at the single cell level in vivo. To solve this limitation, the candidate will use a microfluidics-
fluorescent imaging system that tracks up to six different pathways simultaneously during the transition from
proliferation into quiescence. Using this approach, the coordination between stress responses and the cell cycle
machinery can be quantified with unprecedented temporal resolution in the model organism S. cerevisiae. A
computational platform based on machine learning and time series analysis will be used to process the large
imaging data derived from tracking six biomarkers simultaneously in single cells. An initial version of this
framework found that during the onset of quiescence the nuclear levels of the conserved DNA-replication kinase
Cdc7 are dynamically regulated. This approach also identified that the nuclear levels of the stress-activated
transcriptional repressor Xbp1 define how the cell cycle is stopped during quiescence entry. Combining this
computational approach with biochemical techniques will determine the molecular mechanisms for the
establishment of cellular quiescence by modulation of stress responses and the cell cycle machinery.
The candidate is to acquire crucial training in computational biology during the K99 phase of this proposal to
complement his previous training in biochemistry, cell biology and yeast genetics. The candidate will be
mentored by a leader in computational biology Dr. Gaudenz Danuser, whose lab develops advanced machine
learning and time series analysis to study cellular signal transduction. This proposal harnesses the commitment
of an entire bioinformatics core facility and the training environment of a world-class research institution at UTSW.
Establishing a unique computational and imaging framework, combined with biochemical approaches for the
study of quiescence, will support the candidate’s transition to an independent research academic position and
will lead to the discovery of biomedically relevant principles of quiescence and cell cycle regulation.
抽象的
该建议旨在为候选人的长期职业计划提供关键的培训,以研究细胞
静止是通过决策过程建立的。决定静止的决定
压力或发育信号是生活系统的基本且知识的特性。无法
保持静止会导致人类(例如纤维化或癌症)的细胞增殖疾病。
当多个营养和应力感应信号通路阻止细胞周期时,静止进入
机械。但是,与细胞周期协调应力响应途径的分子机制
在静止期间,在很大程度上不清楚。这部分是由于难以简单地量化多个
体内单细胞水平的应力途径。为了解决这一限制,候选人将使用微流体 -
荧光成像系统,该系统仅在从
扩散到静止。使用这种方法,应力反应与细胞周期之间的协调
在模型生物体中,可以用前所未有的临时分辨率来量化机械。一个
基于机器学习和时间序列分析的计算平台将用于处理大型
仅在单个细胞中仅跟踪六个生物标志物而得出的成像数据。这个的初始版本
框架发现,在静止的开始期间,配置的DNA复制激酶的核水平
CDC7受动态调节。这种方法还确定了应力激活的核水平
转录复制XBP1定义了在静止输入期间如何停止细胞周期。结合这个
使用生化技术的计算方法将确定分子机制
通过调节应力反应和细胞周期机制来建立细胞静止。
候选人是在本提案的K99阶段获得计算生物学的关键培训,以
补充他以前在生物化学,细胞生物学和酵母遗传学方面的培训。候选人将是
由计算生物学领导者Gaudenz Danuser博士的指导,他的实验室开发高级机器
学习和时间序列分析以研究细胞信号转导。该提议利用承诺
整个生物信息学核心设施和UTSW世界一流研究机构的培训环境。
建立独特的计算和成像框架,并结合生化方法
静止研究将支持候选人向独立研究学术职位的过渡,并
将导致发现静止和细胞周期调节的生物医学相关原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Orlando Argüello-Miranda其他文献
Orlando Argüello-Miranda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Orlando Argüello-Miranda', 18)}}的其他基金
相似国自然基金
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:82201339
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于抑郁症和气虚证应激共易感性的病证结合动物模型研究
- 批准号:81874374
- 批准年份:2018
- 资助金额:81.0 万元
- 项目类别:面上项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于同步辐射X射线实时显微CT结合定量力学测试方法的大鼠骨质疏松模型运动治疗研究
- 批准号:U1732119
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:联合基金项目
相似海外基金
Small molecules combination therapy using polypharmacology approach as a novel treatment paradigm for rare bone disease
使用多药理学方法的小分子联合疗法作为罕见骨病的新型治疗范例
- 批准号:
10759694 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10333641 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Biomarkers, mechanisms and modulation of oxidative stress associated risk factors in carcinogenesis
致癌过程中氧化应激相关危险因素的生物标志物、机制和调节
- 批准号:
10704632 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别: