Systems biology of quiescence entry
进入静止的系统生物学
基本信息
- 批准号:10661143
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnimal ModelBindingBiochemicalBiochemistryBioinformaticsBiological AssayBiological MarkersCarbonCell CycleCell Cycle ArrestCell Cycle ProgressionCell Cycle RegulationCell ProliferationCell physiologyCellsCellular StructuresCellular biologyColorComplementComputational BiologyComputing MethodologiesCore FacilityCyclic AMPCyclic AMP-Dependent Protein KinasesDNA biosynthesisDataDecision MakingDevelopmentDiseaseEnvironmentFailureFibrosisGoalsHistone AcetylationHumanImageImmunoprecipitationIn complete remissionInstitutionLabelLeadMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasuresMeiosisMentorsMetabolicMethodsMicrofluidicsMicroscopyMolecularNitrogenNuclearNutrientNutrient DepletionOrganOrganismPathway interactionsPatternPhasePhosphotransferasesPositioning AttributeProblem SolvingProcessPropertyProtein BiosynthesisProteinsPublishingReporterResearchRoleSaccharomyces cerevisiaeSignal PathwaySignal TransductionSourceStarvationStressSystems BiologyTechniquesTestingTime Series AnalysisTissuesTrainingTranscription RepressorWorkXBP1 geneanaphase-promoting complexbasebiological adaptation to stresscareercellular imagingcomputational platformcomputer frameworkdesigndetection of nutrientexperimental studyfluorescence imaginggene repressiongenetic approachimaging approachimaging systemin vivopreventresponsesingle cell analysistemporal measurementtoolyeast genetics
项目摘要
Abstract
This proposal aims to provide crucial training for the candidate’s long-term career plan to study how cellular
quiescence is established through decision-making processes. The decision to undergo quiescence in response
to stress or developmental signals is a fundamental and understudied property of living systems. Failure to
maintain quiescence can lead to cell proliferation disorders in humans, such as fibrosis or cancer.
Quiescence entry is triggered when multiple nutrient- and stress-sensing signaling pathways arrest the cell cycle
machinery. However, the molecular mechanisms that coordinate stress response pathways with the cell cycle
during quiescence remain largely unclear. This is, in part, due to the difficulties to simultaneously quantify multiple
stress pathways at the single cell level in vivo. To solve this limitation, the candidate will use a microfluidics-
fluorescent imaging system that tracks up to six different pathways simultaneously during the transition from
proliferation into quiescence. Using this approach, the coordination between stress responses and the cell cycle
machinery can be quantified with unprecedented temporal resolution in the model organism S. cerevisiae. A
computational platform based on machine learning and time series analysis will be used to process the large
imaging data derived from tracking six biomarkers simultaneously in single cells. An initial version of this
framework found that during the onset of quiescence the nuclear levels of the conserved DNA-replication kinase
Cdc7 are dynamically regulated. This approach also identified that the nuclear levels of the stress-activated
transcriptional repressor Xbp1 define how the cell cycle is stopped during quiescence entry. Combining this
computational approach with biochemical techniques will determine the molecular mechanisms for the
establishment of cellular quiescence by modulation of stress responses and the cell cycle machinery.
The candidate is to acquire crucial training in computational biology during the K99 phase of this proposal to
complement his previous training in biochemistry, cell biology and yeast genetics. The candidate will be
mentored by a leader in computational biology Dr. Gaudenz Danuser, whose lab develops advanced machine
learning and time series analysis to study cellular signal transduction. This proposal harnesses the commitment
of an entire bioinformatics core facility and the training environment of a world-class research institution at UTSW.
Establishing a unique computational and imaging framework, combined with biochemical approaches for the
study of quiescence, will support the candidate’s transition to an independent research academic position and
will lead to the discovery of biomedically relevant principles of quiescence and cell cycle regulation.
抽象的
该提案旨在为候选人的长期职业规划提供重要的培训,以研究细胞如何
静止是通过决策过程建立的,决定进行静止作为响应。
应激或发育信号是生命系统的一个基本且未被充分研究的特性。
保持静止会导致人类细胞增殖紊乱,例如纤维化或癌症。
当多个营养和压力感应信号通路阻止细胞周期时,就会触发静止状态
然而,协调应激反应途径与细胞周期的分子机制。
静止期间的情况在很大程度上仍不清楚,部分原因是难以同时量化多个。
为了解决这一限制,候选人将使用微流体-
荧光成像系统,可在从
使用这种方法,应激反应和细胞周期之间的协调。
模型生物酿酒酵母 A 中的机制可以以前所未有的时间分辨率进行量化。
基于机器学习和时间序列分析的计算平台将用于处理大量数据
成像数据同时来自单细胞中的六个跟踪生物标记。
框架发现,在静止期开始时,保守的 DNA 复制激酶的核水平
Cdc7 是动态调节的,这种方法还确定了应激激活的核水平。
转录抑制因子 Xbp1 定义了细胞周期在进入静止期间如何停止。
生物化学技术的计算方法将确定其分子机制
通过调节应激反应和细胞周期机制建立细胞静止。
候选人将在本提案的 K99 阶段获得计算生物学方面的重要培训,以
他之前在生物化学、细胞生物学和酵母遗传学方面的培训将是对候选人的补充。
由计算生物学领域的领导者 Gaudenz Danuser 博士领导,他的导师实验室开发先进的机器
该提案利用了这一承诺。
UTSW 的整个生物信息学核心设施和世界一流研究机构的培训环境。
建立独特的计算和成像框架,结合生化方法
对静止的研究,将支持候选人过渡到独立研究学术职位,并且
将导致发现生物医学相关的静止和细胞周期调节原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Orlando Argüello-Miranda其他文献
Orlando Argüello-Miranda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Orlando Argüello-Miranda', 18)}}的其他基金
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small molecules combination therapy using polypharmacology approach as a novel treatment paradigm for rare bone disease
使用多药理学方法的小分子联合疗法作为罕见骨病的新型治疗范例
- 批准号:
10759694 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10333641 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Biomarkers, mechanisms and modulation of oxidative stress associated risk factors in carcinogenesis
致癌过程中氧化应激相关危险因素的生物标志物、机制和调节
- 批准号:
10704632 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别: