Developing Clinical Decision Support Systems Adaptive to Clinicians' Fatigue (Cessation Fatigue)

开发适应临床医生疲劳(戒断疲劳)的临床决策支持系统

基本信息

  • 批准号:
    10655627
  • 负责人:
  • 金额:
    $ 16.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Abstract: Fatigue is a latent hazard in health care, (particularly in emergency departments-ED), leading to poor judgement and increased medical errors. Fatigue-induced adverse events have negative financial and patient/occupational safety impact in EDs and other settings. Commonly used time- and task-management strategies (e.g., multitasking), are much less effective in clinicians with fatigue. Potential causes, consequences, and fatigue-induced adverse events, have been studied, however interventions to mitigate risks is limited. Currently proposed solutions to obviate fatigue (e.g., limit working hours, decreased patient load) can be helpful, but fatigue is a complex construct, making it less feasible to develop uncomplicated solutions. Decades of adaptive automation literature suggest that clinical decision support (CDS) systems that can adapt to in-the-moment variations in clinician’s fatigue, have potential to intercept fatigue-induced human errors and preclude potential adverse events. A criticism of CDS, is that it only provides decontextualized decision support when it has potential to be adapted to its users (i.e., frontline clinicians). Users with different fatigue level have different needs. When CDS support is decontextualized, it becomes part of the background that actually contribute to clinician fatigue. Clinicians not welcoming CDS prompts, develop strategies to avoid interacting with the CDS, which can lead to negative outcomes. Adaptive CDS would configure itself based on a clinician’s fatigue level to provide the right level of information, to the right user, at the right time. The primary objective of this study is to develop the foundation for adaptive CDS in EDs, that is sensitive to a user’s fatigue and adapts to the user’s fatigue level. A mixed method design will be used to achieve our objective through two aims: (1) Examine the impact of ED clinician fatigue on (a) clinical decision making and (b) the use of the CDS for antibiotic prescription; (2) Develop and evaluate CDS design and implementation guidelines for a CDS that adapts to ED clinician fatigue. The unique contribution of this study lies in (1) creating a foundation for a novel health information technology (HIT), adaptable CDS; (2) integrating cognitive decision-making theories into the CDS design; (3) developing a CDS to accommodate the prevalent negative work condition, fatigue. Three main deliverables will be disseminated comprehensively. First, we will provide a detailed description of impact of fatigue on clinical decision making. Second, we will provide a detailed description of impact of fatigue on the use of clinical decision support systems in EDs. Third, we will report on design guidelines for adaptive CDS, thereby supporting replicability by other scholars and designers. Eventually, this proposal will improve clinician’s performance under challenging work conditions, hence patient outcomes.
摘要:疲劳是医疗保健的潜在危害(尤其是在急诊部门),导致 判断力不佳,医疗错误增加。疲劳引起的不良事件的财务状况为负,并且 ED和其他环境中的患者/职业安全影响。常用时间和任务管理 在患有疲劳的临床医生中,策略(例如多任务处理)的效率要差得多。潜在原因, 后果和疲劳引起的不良事件已经研究了,但是干预措施以减轻风险 有限。目前提出的解决方案以消除疲劳(例如,限制工作时间,减少患者负荷)可以 要有所帮助,但是疲劳是一种复杂的结构,使得开发简单的解决方案的可行性降低了。 几十年的自适应自动化文献表明,临床决策支持(CD)系统可以适应 在临床疲劳的瞬间变化中,有可能拦截疲劳引起的人类错误和 排除潜在的不利事件。 CD的批判性是,它仅在有潜力的情况下才能提供去上下文的决策支持 适应其用户(即一线临床医生)。疲劳水平不同的用户有不同的需求。当CD时 支持是脱皮的,它成为实际导致临床疲劳的背景的一部分。 临床医生不欢迎CD提示,制定策略以避免与CD互动,这可能导致 负结果。自适应CD将根据临床的疲劳水平进行配置,以提供正确的 在正确的时间向正确的用户提供信息级别。 这项研究的主要目的是为ED中的自适应CD建立基础,这对 用户的疲劳和适应用户的疲劳水平。混合方法设计将用于实现我们的 通过两个目的目标:(1)检查ED临床疲劳对(a)临床决策和 (b)使用CD用于抗生素处方; (2)开发和评估CD的设计和实施 适应ED临床疲劳的CD指南。 这项研究的独特贡献在于(1)为新颖的健康信息技术创造基础 (命中),适应性CD; (2)将认知决策理论整合到CDS设计中; (3)开发 CD适应普遍的负面工作状况,疲劳。 三个主要可交付成果将彻底传播。首先,我们将提供一个详细的描述 疲劳对临床决策的影响。第二,我们将提供疲劳影响的详细描述 关于在ED中使用临床决策支持系统。第三,我们将报告自适应设计指南 CD,从而支持其他学者和设计师的可复制性。最终,该提议将有所改善 临床在挑战工作条件下的表现,因此会有患者的预后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Mustafa Ozkaynak的其他基金

Developing Clinical Decision Support Systems Adaptive to Clinicians' Fatigue (Cessation Fatigue)
开发适应临床医生疲劳(戒断疲劳)的临床决策支持系统
  • 批准号:
    10526584
    10526584
  • 财政年份:
    2022
  • 资助金额:
    $ 16.91万
    $ 16.91万
  • 项目类别:

相似海外基金

UNderstanding the Delivery of Low-Value CAre To CHildren and the Barriers to De-Implementation (UN-LATCH)
了解向儿童提供低价值护理以及取消实施的障碍 (UN-LATCH)
  • 批准号:
    10649811
    10649811
  • 财政年份:
    2023
  • 资助金额:
    $ 16.91万
    $ 16.91万
  • 项目类别:
Effects of Family Caregiver Availability and Capacity on Home Health Care for Older Adults with Alzheimer's Disease and Related Dementias
家庭护理人员的可用性和能力对患有阿尔茨海默病和相关痴呆症的老年人的家庭保健的影响
  • 批准号:
    10571079
    10571079
  • 财政年份:
    2023
  • 资助金额:
    $ 16.91万
    $ 16.91万
  • 项目类别:
CDC supplement year 2
CDC 补充第 2 年
  • 批准号:
    10828080
    10828080
  • 财政年份:
    2023
  • 资助金额:
    $ 16.91万
    $ 16.91万
  • 项目类别:
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
  • 批准号:
    10699457
    10699457
  • 财政年份:
    2023
  • 资助金额:
    $ 16.91万
    $ 16.91万
  • 项目类别:
Personalized Antibiotic Therapy in the Emergency Department: PANTHER Trial
急诊科的个性化抗生素治疗:PANTHER 试验
  • 批准号:
    10645528
    10645528
  • 财政年份:
    2023
  • 资助金额:
    $ 16.91万
    $ 16.91万
  • 项目类别: