Developing Clinical Decision Support Systems Adaptive to Clinicians' Fatigue (Cessation Fatigue)
开发适应临床医生疲劳(戒断疲劳)的临床决策支持系统
基本信息
- 批准号:10655627
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAdverse eventAffectAntibioticsAutomationCaringCharacteristicsClinicalClinical Decision Support SystemsCognitiveComplexDataDecision MakingDevelopmentEducational workshopElectronic Health RecordEmergency medical serviceEnvironmentEvaluationFatigueFoundationsFrequenciesFutureGoalsGraphGuidelinesHealth systemHealthcareHealthcare SystemsHourImpairmentIndividualIntelligenceInterceptInterruptionInterventionInterviewIntuitionJudgmentKnowledgeLiteratureMedical ErrorsMethodsModelingOccupational SafetyOccupationsOutcomeOutpatientsPatient-Focused OutcomesPatientsPatternPerformancePersonal SatisfactionPopulationPredispositionProcessProviderPublic HealthQualitative EvaluationsQuality of CareQuantitative EvaluationsReportingResourcesScheduleSystemTechniquesTestingTimeTrustUnderinsuredUninsuredVariantWorkalertnessbiomedical informaticsburnoutclinical decision supportclinical decision-makingclinically relevantdesignexperiencehazardhealth information technologyhuman errorimprovedinnovationliteracymultitasknegative affectnovelpatient safetypediatric emergencypressurerecruitresponserisk mitigationsuccesssupport toolstheoriestime use
项目摘要
Abstract: Fatigue is a latent hazard in health care, (particularly in emergency departments-ED), leading to
poor judgement and increased medical errors. Fatigue-induced adverse events have negative financial and
patient/occupational safety impact in EDs and other settings. Commonly used time- and task-management
strategies (e.g., multitasking), are much less effective in clinicians with fatigue. Potential causes,
consequences, and fatigue-induced adverse events, have been studied, however interventions to mitigate risks
is limited. Currently proposed solutions to obviate fatigue (e.g., limit working hours, decreased patient load) can
be helpful, but fatigue is a complex construct, making it less feasible to develop uncomplicated solutions.
Decades of adaptive automation literature suggest that clinical decision support (CDS) systems that can adapt
to in-the-moment variations in clinician’s fatigue, have potential to intercept fatigue-induced human errors and
preclude potential adverse events.
A criticism of CDS, is that it only provides decontextualized decision support when it has potential to be
adapted to its users (i.e., frontline clinicians). Users with different fatigue level have different needs. When CDS
support is decontextualized, it becomes part of the background that actually contribute to clinician fatigue.
Clinicians not welcoming CDS prompts, develop strategies to avoid interacting with the CDS, which can lead to
negative outcomes. Adaptive CDS would configure itself based on a clinician’s fatigue level to provide the right
level of information, to the right user, at the right time.
The primary objective of this study is to develop the foundation for adaptive CDS in EDs, that is sensitive to a
user’s fatigue and adapts to the user’s fatigue level. A mixed method design will be used to achieve our
objective through two aims: (1) Examine the impact of ED clinician fatigue on (a) clinical decision making and
(b) the use of the CDS for antibiotic prescription; (2) Develop and evaluate CDS design and implementation
guidelines for a CDS that adapts to ED clinician fatigue.
The unique contribution of this study lies in (1) creating a foundation for a novel health information technology
(HIT), adaptable CDS; (2) integrating cognitive decision-making theories into the CDS design; (3) developing a
CDS to accommodate the prevalent negative work condition, fatigue.
Three main deliverables will be disseminated comprehensively. First, we will provide a detailed description of
impact of fatigue on clinical decision making. Second, we will provide a detailed description of impact of fatigue
on the use of clinical decision support systems in EDs. Third, we will report on design guidelines for adaptive
CDS, thereby supporting replicability by other scholars and designers. Eventually, this proposal will improve
clinician’s performance under challenging work conditions, hence patient outcomes.
摘要:疲劳是医疗保健(尤其是在急诊部门)的懒散,导致
判断力不佳和医疗错误增加。
患者/职业安全性IMP和其他常用时间和任务管理
策略(例如,多任务)在疲劳的临床医生中有效得多。
已经研究了后果和疲劳引起的不良事件,但是干预以减轻风险
是有限的。
请帮助,但疲劳是一个复杂的辅助结构,使开发未识别的解决方案变得不太可能。
几十年的自适应自动化文献表明,临床决策支持(CD)系统可以适应
在临床医生疲劳的瞬间变化中,有可能拦截幕僚引起的人类错误和
排除潜在的不利事件。
对CD的批评是,在此之前,只有在有可能成为可能的情况下提供否定的决策支持。
适应其用户(即前线临床医生)。
支持是脱皮的,它是背景的一部分,这是临床医生疲劳的作用。
临床医生不欢迎CD提示,制定策略以避免与CD互动,这可能导致
负面结果。
在正确的时间向正确的用户提供信息级别。
这是为ED中自适应CD基础发展基础的主要目的,这对
用户的疲劳和适应用户的疲劳水平。
通过两个目的目标:(1)检查ED临床医生疲劳对(a)临床决策和和和和
(b)使用CD用于抗生素处方;
适应ED临床医生疲劳的CD指南。
这项研究的独特贡献在于(1)为Noalth信息技术创造基础
(命中),适应性CD;(2)将认知决策理论整合到CDS设计中;
CD适应普遍的负面工作状况,疲劳。
三个主要的交付成果将全面传播。
疲劳对临床决策的影响。
关于临床决策支持系统的使用
CD,从而支持其他学者和设计师的可复制性。
临床医生的表演在挑战工作条件下,患者的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mustafa Ozkaynak其他文献
Mustafa Ozkaynak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mustafa Ozkaynak', 18)}}的其他基金
Developing Clinical Decision Support Systems Adaptive to Clinicians' Fatigue (Cessation Fatigue)
开发适应临床医生疲劳(戒断疲劳)的临床决策支持系统
- 批准号:
10526584 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
相似国自然基金
GNB3联合光谱CT冠周脂肪组学预警ACS后心血管不良事件的模型构建
- 批准号:82302186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习和影像学多参数融合的心血管不良事件风险预测模型研究
- 批准号:82370513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于效用错位视角的医疗不良事件管理政策的引导体系优化研究
- 批准号:72304012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于真实世界数据的药物相互作用相关不良事件风险评估及其管理策略研究
- 批准号:72304010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
UNderstanding the Delivery of Low-Value CAre To CHildren and the Barriers to De-Implementation (UN-LATCH)
了解向儿童提供低价值护理以及取消实施的障碍 (UN-LATCH)
- 批准号:
10649811 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Effects of Family Caregiver Availability and Capacity on Home Health Care for Older Adults with Alzheimer's Disease and Related Dementias
家庭护理人员的可用性和能力对患有阿尔茨海默病和相关痴呆症的老年人的家庭保健的影响
- 批准号:
10571079 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
- 批准号:
10699457 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Personalized Antibiotic Therapy in the Emergency Department: PANTHER Trial
急诊科的个性化抗生素治疗:PANTHER 试验
- 批准号:
10645528 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别: