Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
基本信息
- 批准号:10698186
- 负责人:
- 金额:$ 38.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiological AssayBiologyCellsCellular biologyCollaborationsCommunitiesDevelopmentDiagnostic ProcedureG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTPase-Activating ProteinsGoalsGoldHeatingInvestigationLaboratory ResearchLasersLightLipidsLocationMeasuresMediatingMembraneMethodsModelingModern MedicineMolecularNeuropeptide ReceptorNeuropeptidesOptical MethodsOpticsOutcomePAR-2 ReceptorPhysiologic pulseProcessProtein ConformationProteinsRecording of previous eventsResearchSignal TransductionSpectrum AnalysisSurfaceTechniquesTemperatureTestingTimeWorkbiological systemschronic painextracellularinnovationinsightinterestnanonanomaterialsnanometernanoparticlenanosecondnanovesiclenovelplasmonicsprogramsreceptorresponsesuccesstemperature jumptooltrafficking
项目摘要
Abstract
Optical tools have unparalleled spatial and temporal precision and have been instrumental to better understand
various processes in modern medicine and biology. The overall goal of my research laboratory is to
understand the laser-plasmonic nanoparticle interactions and its effects at the interface between biological
systems and nanomaterials. Specifically, experimental techniques and methods have been developed to
understand the effects of nanoparticle plasmonic heating on proteins and lipids immediately next to the
nanoparticle. This has led to new enabling tools for optical protein manipulation and photosensitive
nanovesicles for molecular uncaging, as well as innovative diagnostic methods. This proposed research focus
on the development of optical control of protein activity in live cells, namely plasmon-assisted light inactivation
(PALI). PALI is based on pulsed laser heating (nanosecond) of plasmonic nanoparticles, and its thermally
confined heating to unfold and denature surrounding proteins within a few nanometers of nanoparticle surface.
Thus, PALI also effectively acts a unique nano temperature-jump (T-jump), an innovative experimental platform
to address a gap for protein unfolding investigations. In the next five years, I plan to develop my research
program in these two directions. Firstly, I will focus on developing this new optical tool to manipulate protein
activity in live cells with emphasis on G-protein coupled receptors (GPCR), an important and diverse class of
membrane receptors that mediate extracellular to intracellular signaling. This encompasses a systematic
approach to understand the interaction and trafficking of nanoparticles with GPCR, the cellular responses of
PALI on GPCR signaling, and finally the applicability of PALI on other GPCRs. I will primarily use a specific
GPCR, protease activated receptor 2 (PAR2) that is important for chronic pain, as a working model. To test for
other GPCRs, I will test GPCRs for neuropeptides, which are synergistic with our efforts to create neuropeptide
photosensitive nanovesicles. Secondly, I will concentrate on the characterization of the nano T-jump by
addressing two fundamental questions: (1) can the nanoparticle temperature be directly measured during
pulsed laser heating or after a short delay? (2) How does the protein unfold under nano T-jump? These
involves our existing collaborations with the Argonne National Lab to probe the gold lattice expansion using
advanced spectroscopy, and various structural and functional assays to measure the protein unfolding and
inactivation due to the nano T-jump. By the end of the five years, I anticipate solving important technical
challenges to demonstrate the use of PALI to manipulate protein activity in live cells through GPCRs, and
obtain a clear understanding of the temperature history and protein responses with the innovative nano T-jump
platform. These outcomes would generate interest to the broad research community and enable others to
tackle important challenges in cell biology using PALI.
抽象的
光学工具具有无与伦比的空间和时间精度,并且有助于更好地理解
现代医学和生物学的各种过程。我的研究实验室的总体目标是
了解生物学之间的激光质量纳米粒子相互作用及其在界面上的影响
系统和纳米材料。具体而言,已经开发了实验技术和方法
了解纳米颗粒等离激元加热对紧邻蛋白质和脂质的影响
纳米颗粒。这导致了用于光学蛋白质操纵和光敏的新的促成工具
用于分子渗透的纳米孢子以及创新的诊断方法。这个拟议的研究重点
关于活细胞中蛋白质活性的光学控制,即等离子辅助光失活
(帕利)。 Pali基于等离子纳米颗粒的脉冲激光加热(纳米秒)及其热量
将加热限制为展开,并在纳米颗粒表面的几纳米内蛋白质变性。
因此,帕利还有效地作用独特的纳米温度跳跃(T-JUMP),这是一个创新的实验平台
解决蛋白质展开研究的差距。在接下来的五年中,我计划发展我的研究
在这两个方向上进行程序。首先,我将专注于开发这种新的光学工具来操纵蛋白质
活细胞的活性,重点是G蛋白偶联受体(GPCR),这是一类重要而多样的类别
介导细胞外信号传导的膜受体。这包括系统
了解纳米颗粒与GPCR的相互作用和运输的方法,
Pali在GPCR信号传导上,最后是Pali在其他GPCR上的适用性。我将主要使用特定的
GPCR,蛋白酶激活受体2(PAR2),对于慢性疼痛作为工作模型很重要。测试
其他GPCR,我将测试GPCR的神经肽,这与我们创建神经肽的努力协同作用
光敏性纳米层。其次,我将专注于纳米T-突变的表征
解决两个基本问题:(1)可以直接测量纳米颗粒温度
脉冲激光加热还是短延迟后? (2)蛋白在纳米T-Jump下如何展开?这些
涉及我们与Argonne National Lab的现有合作,以使用
晚期光谱法以及各种结构和功能测定法,以测量蛋白质展开和
由于纳米T型引起的失活。到五年结束时,我预计要解决重要的技术
挑战以证明使用PALI通过GPCR操纵活细胞中的蛋白质活性,并
通过创新的纳米T-大小对温度病史和蛋白质反应有清晰的了解
平台。这些结果将引起广泛的研究社区的兴趣,并使其他人能够
解决使用Pali的细胞生物学的重要挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenpeng Qin其他文献
Zhenpeng Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenpeng Qin', 18)}}的其他基金
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10547200 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10665073 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10627753 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10155417 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10394257 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
- 批准号:
10223375 - 财政年份:2019
- 资助金额:
$ 38.25万 - 项目类别:
Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
- 批准号:
10799344 - 财政年份:2019
- 资助金额:
$ 38.25万 - 项目类别:
相似国自然基金
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于同位素稀释质谱技术的多酚类物质生物学标志物的测定研究
- 批准号:81301487
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
关节软骨损伤及修复生物学表达及影像定量测定的基础研究
- 批准号:81171312
- 批准年份:2011
- 资助金额:56.0 万元
- 项目类别:面上项目
登革病毒不同毒株重要生物学特性的研究及全基因序列的测定
- 批准号:30360101
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:地区科学基金项目
PmDNT生物学活性测定及其在猪AR发病中的作用
- 批准号:39170586
- 批准年份:1991
- 资助金额:3.5 万元
- 项目类别:面上项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
- 批准号:
10638114 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
- 批准号:
10678199 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别: