Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks
利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化
基本信息
- 批准号:10710055
- 负责人:
- 金额:$ 46.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-26 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcuteAddressAutomobile DrivingAwarenessBiologicalBiological AssayBiologyBrainCISH geneCell LineageCell NucleusCellsChromatinChromosome MappingClinicalClustered Regularly Interspaced Short Palindromic RepeatsComparative StudyComputing MethodologiesDataData AnalysesData SetDevelopmentDiseaseElementsEvolutionExcisionExhibitsFamily suidaeGene ExpressionGene Expression ProfileGene Expression RegulationGenesGenomic SegmentGrowthHeterogeneityHumanIndividualKidneyKidney DiseasesLearningMeasurementMeasuresMedicineMethodsModelingMolecularMusNephrectomyOrganPathologic ProcessesPathway AnalysisPatientsPatternPhenotypePhylogenetic AnalysisPhylogenyPhysiologyPlayPopulationPrimatesProcessPropertyProteinsPublishingRattusRenal functionResearch DesignResearch PersonnelResolutionRetinaRodentRoleSamplingSmall Interfering RNASoftware ToolsSourceSpecific qualifier valueSpecificityStructureSystemTechnologyTestingTimeTissuesTransgenesTransposaseWorkcell fate specificationcell typecomparativecomputerized toolscomputing resourcesfunctional genomicsgene conservationgene regulatory networkgenetic regulatory proteininfancyinnovationinsightmachine learning methodmultiple datasetsmultiple omicsmultitasknovelprogramssingle cell technologysingle-cell RNA sequencingspatiotemporaltooltraittranscription factortrendvalidation studies
项目摘要
PROJECT SUMMARY
Comparative functional genomics offers a powerful framework to study the molecular underpinnings of species-
specific traits. Gene regulatory networks (GRNs) which control precise context-specific expression patterns of
genes play a significant role in diversifying phenotypes across species. These networks are central to cell type
specific function and are often disrupted in many diseases. However, comparison of gene regulatory networks
across species has been challenging because of the lack of sufficient number of samples across matched
biological contexts. Single cell omic technologies, such as single cell RNA-seq (scRNA-seq) and ATAC-seq
(scATAC-seq), are revolutionizing biology enabling researchers to profile the activity of nearly all genomic
regions in each individual cell. Single cell omic studies are quickly expanding to multiple species providing
unprecedented opportunities to define cell types and their underlying gene regulatory networks and study their
evolution. However, computational methods for defining cell-types and cell-specific GRNs across species are
in their infancy. In particular, samples in a multi-species scRNA-seq dataset are related by a phylogeny, however,
existing integration approaches do not model these relationships. Furthermore, existing approaches are
restricted to one-to-one relationships across species, which makes it difficult to study some of the major sources
of evolutionary innovation (e.g., duplications) in cell type identity. In this project, we will develop novel
computational methods to tackle two problems: (a) defining cell types and their lineage relationships across
species from scRNA-seq and scATAC-seq datasets, (b) inference and comparative analysis of cell type-specific
GRNs across species from single cell RNA-seq and ATAC-seq data. Our tools will be based on machine learning
methods, namely, probabilistic graphical models, multi-task and multi-view learning, and matrix factorization, that
offer principled frameworks to integrate information across species. We will first test these tools in human and
mouse scRNA-seq/ATAC-seq datasets from our collaborators and published studies. We will demonstrate the
full potential of our tools on a novel multi-species kidney scRNA-seq/scATAC-seq dataset that we will collect to
study normal kidney function as well as compensatory renal growth, which controls how one kidney recovers
after surgical removal of another kidney. We will identify conserved and diverged regulatory networks that will
be used to prioritize sequence and protein regulators for validation studies with CRISPR and siRNA. Our analysis
will reveal key insights into how GRNs evolve across species and how they establish different cell types. Our
approaches and novel datasets will provide critical insight into the molecular programs governing kidney
structure and function that could have a significant clinical impact for patients with kidney disease. Our methods
will constitute a suite of broadly applicable tools that can shed insight into principles of gene regulation and cell
fate specification that will be applicable to single cell datasets from diverse multi-cellular systems.
项目概要
比较功能基因组学为研究物种的分子基础提供了一个强大的框架——
具体特征。基因调控网络(GRN)控制精确的上下文特定表达模式
基因在跨物种表型多样化方面发挥着重要作用。这些网络是细胞类型的核心
特定的功能在许多疾病中经常被破坏。然而,基因调控网络的比较
跨物种一直具有挑战性,因为缺乏足够数量的匹配样本
生物学背景。单细胞组学技术,例如单细胞 RNA-seq (scRNA-seq) 和 ATAC-seq
(scATAC-seq)正在彻底改变生物学,使研究人员能够分析几乎所有基因组的活性
每个单独细胞中的区域。单细胞组学研究正在迅速扩展到多个物种,提供
定义细胞类型及其潜在基因调控网络并研究它们的前所未有的机会
进化。然而,用于定义跨物种细胞类型和细胞特异性 GRN 的计算方法是
在他们的婴儿期。特别是,多物种 scRNA-seq 数据集中的样本通过系统发育相关,但是,
现有的集成方法没有对这些关系进行建模。此外,现有的方法是
仅限于跨物种的一对一关系,这使得研究一些主要来源变得困难
细胞类型识别中的进化创新(例如重复)。在这个项目中,我们将开发新颖的
解决两个问题的计算方法:(a)定义细胞类型及其谱系关系
来自 scRNA-seq 和 scATAC-seq 数据集的物种,(b) 细胞类型特异性的推断和比较分析
来自单细胞 RNA-seq 和 ATAC-seq 数据的跨物种 GRN。我们的工具将基于机器学习
方法,即概率图模型、多任务和多视图学习以及矩阵分解,
提供原则框架来整合跨物种的信息。我们将首先在人类和
来自我们合作者和已发表研究的小鼠 scRNA-seq/ATAC-seq 数据集。我们将展示
我们的工具在新型多物种肾脏 scRNA-seq/scATAC-seq 数据集上的全部潜力,我们将收集该数据集
研究正常肾功能以及代偿性肾脏生长,这控制着一个肾脏的恢复方式
手术切除另一个肾脏后。我们将确定保守且分散的监管网络
用于优先考虑序列和蛋白质调节因子,以进行 CRISPR 和 siRNA 的验证研究。我们的分析
将揭示有关 GRN 如何跨物种进化以及它们如何建立不同细胞类型的关键见解。我们的
方法和新颖的数据集将为控制肾脏的分子程序提供重要的见解
结构和功能可能对肾病患者产生重大临床影响。我们的方法
将构成一套广泛适用的工具,可以深入了解基因调控和细胞的原理
命运规范将适用于来自不同多细胞系统的单细胞数据集。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting patient-specific enhancer-promoter interactions.
预测患者特异性增强子-启动子相互作用。
- DOI:
- 发表时间:2023-09-25
- 期刊:
- 影响因子:0
- 作者:Baur, Brittany;Roy, Sushmita
- 通讯作者:Roy, Sushmita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sushmita Roy其他文献
Sushmita Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sushmita Roy', 18)}}的其他基金
Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
- 批准号:
10669280 - 财政年份:2022
- 资助金额:
$ 46.48万 - 项目类别:
Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks
利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化
- 批准号:
10595349 - 财政年份:2022
- 资助金额:
$ 46.48万 - 项目类别:
Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
- 批准号:
10530982 - 财政年份:2022
- 资助金额:
$ 46.48万 - 项目类别:
Computational approaches for comparative regulatory genomics to decipher long-range gene regulation
比较调控基因组学的计算方法来破译远程基因调控
- 批准号:
10208923 - 财政年份:2018
- 资助金额:
$ 46.48万 - 项目类别:
Computational Inference of Regulatory Network Dynamics on Cell Lineages
细胞谱系调控网络动力学的计算推断
- 批准号:
9979901 - 财政年份:2016
- 资助金额:
$ 46.48万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Distinct Glycophenotypes with Abnormal Signaling Define a Subpopulation of B cells Responsible for Production of Galactose-Deficient IgA1, the Main Autoantigen in IgA Nephropathy
具有异常信号传导的独特糖表型定义了负责产生半乳糖缺陷型 IgA1(IgA 肾病的主要自身抗原)的 B 细胞亚群
- 批准号:
10563618 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
- 批准号:
10911713 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Tools for reversible short-term degradation of TCF-1 to address its molecular functions
用于 TCF-1 可逆短期降解以解决其分子功能的工具
- 批准号:
10647571 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
- 批准号:
10738862 - 财政年份:2023
- 资助金额:
$ 46.48万 - 项目类别: