3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery
用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管
基本信息
- 批准号:10654054
- 负责人:
- 金额:$ 66.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary:
Cerebral aneurysms are estimated to be prevalent in 3–7% of the general population—with cases increasing
by more than 5% each year—resulting in ~500,000 deaths annually. Minimally invasive neurosurgery typically
represents the best surgical option for treating unruptured aneurysms due to benefits including reduced length
of stay and complications compared to invasive surgical clipping. Endovascular neurointerventions rely on
microcatheters to traverse cerebral anatomy safely to deliver embolic devices or stents for aneurysm treatment.
In many cases, however, tortuous vasculature and geometrically complex aneurysms pose substantial
navigation challenges for neurointerventionalists due to an inability to maneuver conventional microcatheters
safely. These difficulties in navigating such cerebrovascular anatomies contribute to longer procedural times,
unsuccessful catheterization attempts, and increased risks of complications. To address the clinical need for
neurosurgical microcatheters that overcome these maneuverability-associated barriers, we propose to engineer
and evaluate 3D-nanoprinted soft robotic microcatheters with integrated microfluidic circuitry as a means to
enable on-demand, multi-directional steering and navigation control during endovascular neurointerventions.
Our overarching hypothesis is that, by leveraging and extending recent advances at the intersection of machine
learning-based design, additive nanomanufacturing, integrated microfluidic circuitry, and soft microrobotics,
novel classes of remotely steerable neurosurgical microcatheters can be realized at unprecedented scales to
surmount current maneuverability-based deficits, and ultimately, improve catheterization efficacy, safety, and
outcomes in the treatment of cerebral aneurysms. We will investigate the clinical feasibility of this hypothesis
through four specific aims. In Aim 1, we will create machine learning-based design techniques for predicting and
informing the operational performance of the soft robotic microcatheter. In Aim 2, we will examine the manu-
facturing efficacy for 3D nanoprinting multi-actuator tips and integrated microfluidic circuits both independently
and as fully unified soft robotic microcatheters capable of on-demand, multi-directional deformations with minimal
infrastructure and external control scheme-associated requirements. In Aim 3, we will develop a handheld
controller for the neurointerventionalist and compare the maneuverability efficacy of the soft robotic micro-
catheter to that of standard clinical microcatheters using in vitro models of cerebrovascular anatomy based on
patient-specific clinical 3D angiography images. In Aim 4, we will assess the feasibility and safety of the soft
robotic microcatheter (i.e., with respect to standard clinical microcatheters) by performing minimally invasive
endovascular neurointerventions in animal models (canine, n=8). If successful, the proposed 3D-nanoprinted
soft robotic microcatheters hold unique promise to be transformative not only for treating cerebral aneurysms,
but also for wide-ranging endovascular interventions currently considered challenging or high risk due to small,
complex, tortuous, and/or delicate vasculature, such as for the treatment of pediatric congenital heart defects.
项目摘要:
据估计,脑动脉瘤在3-7%的一般人群中很普遍 - 病例增加
每年超过5%,每年约有500,000人死亡。最少侵入性神经外科手术
由于益处包括长度,这是治疗未破裂动脉瘤的最佳外科手术选择
与侵入性手术剪切相比,住院和并发症。血管内神经介入依赖
微心会员可以安全地遍历大脑解剖结构,以提供栓塞设备或支架进行动脉瘤治疗。
然而,在许多情况下,曲折的脉管系统和几何复杂的动脉瘤构成了很大的
由于无法操纵传统的微心会员,神经介入主义者的导航挑战
安全。导航这种脑血管解剖学的这些困难导致了更长的程序时间,
失败的导管插入术,并增加并发症的风险。满足临床需求
克服这些可操作性相关的障碍的神经外科微心会员,我们建议设计
并用集成的微流体电路评估3D-Nanoprint的软机器人微心会员
在血管内神经间隔期间,启用按需,多方向转向和导航控制。
我们的总体假设是,通过利用和扩展机器交集的最新进展
基于学习的设计,加性纳米制造,集成的微流体电路和柔软的微型机器人,
可以在前所未有的尺度上实现新颖的遥控神经外科微心会员
克服目前基于机动性的缺陷,并最终提高导管插入效率,安全性和
治疗脑动脉瘤的结果。我们将研究该假设的临床可行性
通过四个特定目标。在AIM 1中,我们将创建基于机器学习的设计技术,以预测和
告知软机器人微型导仪的运行性能。在AIM 2中,我们将检查Manu-
3D纳米刺激尖端和集成的微流体电路的验证效率均独立
并且作为能够按需的完全统一的软机器人微心精神,多方向变形,最小
基础架构和外部控制方案相关的要求。在AIM 3中,我们将开发一个手持式
神经介入主义者的控制器,并比较软机器人微型的机动性效率
使用基于脑血管解剖学的体外模型的标准临床显微心精神的导管
患者特异性临床3D血管造影图像。在AIM 4中,我们将评估软软的可行性和安全性
机器人微量导线(即,关于标准临床微心会员),通过执行微创
动物模型中的血管内神经干扰(犬,n = 8)。如果成功,则建议的3D-Nanoprint
软机器人的微心会员具有独特的承诺,不仅可以对治疗脑动脉瘤进行变革,
但对于宽范围内血管内干预措施,目前被视为挑战或高风险,原因很小
复杂,曲折和/或精致的脉管系统,例如治疗小儿先天性心脏缺陷。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.
用于制造长而灵活的微流体管的 3D 微印刷同轴喷嘴。
- DOI:10.1109/mems58180.2024.10439296
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Young,OliviaM;Felix,BaileyM;Fuge,MarkD;Krieger,Axel;Sochol,RyanD
- 通讯作者:Sochol,RyanD
GEOMETRIC DETERMINANTS OF CELL VIABILITY FOR 3D-PRINTED HOLLOW MICRONEEDLE ARRAY-MEDIATED DELIVERY.
3D 打印空心微针阵列介导的细胞活力的几何决定因素。
- DOI:10.1109/mems58180.2024.10439381
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Sarker,Sunandita;Wang,Jinghui;Shah,ShreyA;Jewell,ChristopherM;Rand-Yadin,Kinneret;Janowski,Miroslaw;Walczak,Piotr;Liang,Yajie;Sochol,RyanD
- 通讯作者:Sochol,RyanD
FABRICATION OF MULTILUMEN MICROFLUIDIC TUBING FOR EX SITU DIRECT LASER WRITING.
用于异地直接激光书写的多腔微流体管的制造。
- DOI:10.1109/mems58180.2024.10439522
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Felix,BaileyM;Young,OliviaM;Andreou,JordiT;Sarker,Sunandita;Fuge,MarkD;Krieger,Axel;Weiss,CliffordR;Bailey,ChristopherR;Sochol,RyanD
- 通讯作者:Sochol,RyanD
共 3 条
- 1
Ryan Daniel Sochol的其他基金
3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery
用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管
- 批准号:1050271010502710
- 财政年份:2022
- 资助金额:$ 66.74万$ 66.74万
- 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:1064304110643041
- 财政年份:2023
- 资助金额:$ 66.74万$ 66.74万
- 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:1065977210659772
- 财政年份:2023
- 资助金额:$ 66.74万$ 66.74万
- 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:1067953010679530
- 财政年份:2023
- 资助金额:$ 66.74万$ 66.74万
- 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:1073696110736961
- 财政年份:2023
- 资助金额:$ 66.74万$ 66.74万
- 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:1067278410672784
- 财政年份:2023
- 资助金额:$ 66.74万$ 66.74万
- 项目类别: