3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery
用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管
基本信息
- 批准号:10654054
- 负责人:
- 金额:$ 66.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAnatomyAneurysmAngiographyAnimal ModelBlood VesselsCanis familiarisCatheterizationCathetersCerebral AneurysmCerebrovascular systemCerebrumCessation of lifeChildhoodClinicalComplexComplicationCongenital Heart DefectsCraniotomyDevicesDissectionDistalEngineeringGeneral PopulationGeometryGoalsIn VitroInfrastructureInterventionIntracranial HemorrhagesIschemiaLasersLength of StayLocationMachine LearningMeasuresMedicalMethodsMicrofluidicsMorbidity - disease rateNanomanufacturingNeurologicNeurosurgical ProceduresOperative Surgical ProceduresOutcomePatientsPerforationPerformancePrintingProceduresReportingResearchResolutionRiskRobotRoboticsRunningRuptureSafetySchemeSideSpecialistStentsSubarachnoid HemorrhageSurgical ClipsSystemTechniquesTechnologyTestingTimeTransistorsTubeVasospasmWritingcerebrovascularcerebrovascular surgeryclinically relevantdesignhigh riskimprovedimproved outcomein vitro Modelin vivoinnovationmachine learning frameworkmanufacturemicrorobotminimally invasivemortalityneurosurgerynoveloperationpredictive modelingprocedure safetysafety and feasibilitytwo-photon
项目摘要
Project Summary:
Cerebral aneurysms are estimated to be prevalent in 3–7% of the general population—with cases increasing
by more than 5% each year—resulting in ~500,000 deaths annually. Minimally invasive neurosurgery typically
represents the best surgical option for treating unruptured aneurysms due to benefits including reduced length
of stay and complications compared to invasive surgical clipping. Endovascular neurointerventions rely on
microcatheters to traverse cerebral anatomy safely to deliver embolic devices or stents for aneurysm treatment.
In many cases, however, tortuous vasculature and geometrically complex aneurysms pose substantial
navigation challenges for neurointerventionalists due to an inability to maneuver conventional microcatheters
safely. These difficulties in navigating such cerebrovascular anatomies contribute to longer procedural times,
unsuccessful catheterization attempts, and increased risks of complications. To address the clinical need for
neurosurgical microcatheters that overcome these maneuverability-associated barriers, we propose to engineer
and evaluate 3D-nanoprinted soft robotic microcatheters with integrated microfluidic circuitry as a means to
enable on-demand, multi-directional steering and navigation control during endovascular neurointerventions.
Our overarching hypothesis is that, by leveraging and extending recent advances at the intersection of machine
learning-based design, additive nanomanufacturing, integrated microfluidic circuitry, and soft microrobotics,
novel classes of remotely steerable neurosurgical microcatheters can be realized at unprecedented scales to
surmount current maneuverability-based deficits, and ultimately, improve catheterization efficacy, safety, and
outcomes in the treatment of cerebral aneurysms. We will investigate the clinical feasibility of this hypothesis
through four specific aims. In Aim 1, we will create machine learning-based design techniques for predicting and
informing the operational performance of the soft robotic microcatheter. In Aim 2, we will examine the manu-
facturing efficacy for 3D nanoprinting multi-actuator tips and integrated microfluidic circuits both independently
and as fully unified soft robotic microcatheters capable of on-demand, multi-directional deformations with minimal
infrastructure and external control scheme-associated requirements. In Aim 3, we will develop a handheld
controller for the neurointerventionalist and compare the maneuverability efficacy of the soft robotic micro-
catheter to that of standard clinical microcatheters using in vitro models of cerebrovascular anatomy based on
patient-specific clinical 3D angiography images. In Aim 4, we will assess the feasibility and safety of the soft
robotic microcatheter (i.e., with respect to standard clinical microcatheters) by performing minimally invasive
endovascular neurointerventions in animal models (canine, n=8). If successful, the proposed 3D-nanoprinted
soft robotic microcatheters hold unique promise to be transformative not only for treating cerebral aneurysms,
but also for wide-ranging endovascular interventions currently considered challenging or high risk due to small,
complex, tortuous, and/or delicate vasculature, such as for the treatment of pediatric congenital heart defects.
项目概要:
据估计,脑动脉瘤在普通人群中的患病率高达 3-7%,而且病例数还在不断增加
每年增加超过 5%,通常每年导致约 500,000 人死亡。
由于长度缩短等优点,代表了治疗未破裂动脉瘤的最佳手术选择
与侵入性手术夹闭相比,住院时间和并发症更少。
微导管安全地穿过大脑解剖结构,输送栓塞装置或支架以治疗动脉瘤。
然而,在许多情况下,曲折的脉管系统和几何形状复杂的动脉瘤会造成严重的后果。
由于无法操纵传统的微导管,神经介入医生面临导航挑战
安全地导航此类脑血管解剖结构的这些困难导致手术时间更长,
导管插入尝试不成功,并发症风险增加,以满足临床需求。
克服这些与可操作性相关的障碍的神经外科微导管,我们建议设计
并评估具有集成微流体电路的 3D 纳米打印软机器人微导管作为一种手段
在血管内神经干预期间实现按需、多向转向和导航控制。
我们的总体假设是,通过利用和扩展机器交叉领域的最新进展
基于学习的设计、增材纳米制造、集成微流体电路和软微机器人,
新型远程可操纵神经外科微导管可以以前所未有的规模实现
克服当前基于可操作性的缺陷,并最终提高导管插入术的有效性、安全性和
我们将研究该假设的临床可行性。
通过四个具体目标,我们将创建基于机器学习的设计技术来进行预测和预测。
告知软机器人微导管的操作性能在目标 2 中,我们将检查制造商。
3D 纳米打印多执行器尖端和集成微流体电路的制造功效均独立
作为完全统一的软机器人微导管,能够以最小的需求进行多方向变形
在目标 3 中,我们将开发手持设备。
神经介入医生的控制器并比较软机器人微型的可操作性功效
使用基于脑血管解剖学的体外模型将导管与标准临床微导管的导管进行比较
在目标 4 中,我们将评估患者特定的临床 3D 血管造影图像的可行性和安全性。
机器人微导管(即,相对于标准临床微导管)通过执行微创
动物模型(犬,n = 8)的血管内神经干预如果成功,则建议进行 3D 纳米打印。
软机器人微导管具有独特的前景,不仅可以治疗脑动脉瘤,
也适用于目前因小而被认为具有挑战性或高风险的广泛血管内干预,
复杂、曲折和/或脆弱的脉管系统,例如用于治疗儿科先天性心脏缺陷。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.
用于制造长而灵活的微流体管的 3D 微印刷同轴喷嘴。
- DOI:10.1109/mems58180.2024.10439296
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Young,OliviaM;Felix,BaileyM;Fuge,MarkD;Krieger,Axel;Sochol,RyanD
- 通讯作者:Sochol,RyanD
GEOMETRIC DETERMINANTS OF CELL VIABILITY FOR 3D-PRINTED HOLLOW MICRONEEDLE ARRAY-MEDIATED DELIVERY.
3D 打印空心微针阵列介导的细胞活力的几何决定因素。
- DOI:10.1109/mems58180.2024.10439381
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Sarker,Sunandita;Wang,Jinghui;Shah,ShreyA;Jewell,ChristopherM;Rand-Yadin,Kinneret;Janowski,Miroslaw;Walczak,Piotr;Liang,Yajie;Sochol,RyanD
- 通讯作者:Sochol,RyanD
FABRICATION OF MULTILUMEN MICROFLUIDIC TUBING FOR EX SITU DIRECT LASER WRITING.
用于异地直接激光书写的多腔微流体管的制造。
- DOI:10.1109/mems58180.2024.10439522
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Felix,BaileyM;Young,OliviaM;Andreou,JordiT;Sarker,Sunandita;Fuge,MarkD;Krieger,Axel;Weiss,CliffordR;Bailey,ChristopherR;Sochol,RyanD
- 通讯作者:Sochol,RyanD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Daniel Sochol其他文献
Ryan Daniel Sochol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Daniel Sochol', 18)}}的其他基金
3D-Nanoprinted Soft Robotic Microcatheters with Integrated Microfluidic Circuitry for Cerebrovascular Surgery
用于脑血管手术的具有集成微流体电路的 3D 纳米打印软机器人微导管
- 批准号:
10502710 - 财政年份:2022
- 资助金额:
$ 66.74万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 66.74万 - 项目类别: