Leveraging PfCRT Structure to Discern Function and Predict Emergence of Drug-Resistant Malaria
利用 PfCRT 结构识别功能并预测耐药性疟疾的出现
基本信息
- 批准号:10653063
- 负责人:
- 金额:$ 69.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:4-aminoquinolineAfricaAfricanAllelesAmino AcidsAmodiaquineAnti-malarial drug resistanceAntimalarialsAsiaAsianBindingBioenergeticsBiological AssayBiological MarkersBiologyBloodCambodiaCessation of lifeChloroquineChloroquine resistanceClinical TrialsCombined Modality TherapyComplexCryoelectron MicroscopyDNA SequenceDNA deliveryDataDependenceDrug EffluxDrug Metabolic DetoxicationDrug TransportDrug resistanceEngineeringFab ImmunoglobulinsFalciparum MalariaGenesGeneticGenetic MarkersGenetic VariationGeographyGlutathioneGoalsHaplotypesHemeHemoglobinIn VitroInfectionIntegral Membrane ProteinInvestigationIonsKineticsLengthLifeLipidsLiposomesMalariaMediatingMediatorMembraneMembrane ProteinsModelingMolecularMolecular ConformationMulti-Drug ResistanceMutateMutationParasite resistanceParasitesPatternPeptidesPharmaceutical PreparationsPhysiologicalPlasmodium falciparumPopulationPredispositionPrincipal InvestigatorPropertyProtein BiochemistryProtein IsoformsProteinsRecombinant ProteinsRecombinantsReportingResearchResistanceResistance profileResolutionRoleSouth AmericanStructureSystemTechnologyTestingTransmembrane TransportTreatment FailureUniversitiesVacuoleVariantasexualbiophysical techniquesdriving forcedrug-sensitiveeffective therapyexperimental studygenetic resistanceinsightmonomermortalitymutantnanodisknovelnovel therapeuticsparticlepressureprotein purificationprotein structureresistant Plasmodium falciparumtraittransmission process
项目摘要
Drug resistance in Plasmodium falciparum (Pf), the deadliest of the malaria parasites that threatens almost half
the world’s population, has been associated with genetic changes in specific parasite alleles from field isolates.
The protein responsible for Pf asexual blood stage (ABS) parasite resistance to both previously and currently
used first-line antimalarials, chloroquine (CQ) piperaquine (PPQ) and amodiaquine (ADQ), is the 48-kDa P.
falciparum chloroquine resistance transporter (PfCRT). CQ, PPQ and ADQ, all 4-aminoquinolines, eliminate
drug-sensitive Pf ABS parasites by inhibiting the detoxification of host heme, a product of parasite-mediated
hemoglobin degradation, inside their digestive vacuole (DV). PfCRT, situated in the DV membrane, is thought
to mediate CQ resistance via drug efflux. Our progress in understanding how PfCRT functions, and the
molecular basis of PfCRT-mediated drug resistance, has been seriously hampered by the lack of an atomic
model of this transporter. Using antigen-binding fragment (Fab) technology and single-particle cryo-electron
microscopy, we have determined the structure of the full-length CQ-resistant 7G8 mutant isoform of this 10-
transmembrane protein to 3.2 Å resolution, in an inward-open conformation. These preliminary data are
presented herein, together with functional assays using purified protein in nanodiscs and in liposomes, and
parasite-based assays with pfcrt-modified lines. In this application, we propose to compressively define PfCRT
structure and function and leverage this into experimentally testable predictions of how PfCRT can further
evolve to drive new patterns of multidrug resistance across malaria-endemic regions. In Aim 1, we will solve
the PfCRT structure for globally variant isoforms, including complexes with the antimalarial drugs CQ, PPQ
and ADQ, and physiologic substrates. In Aim 2, we will implement biophysical approaches with recombinant
protein to elucidate the natural function of PfCRT and develop a model of PfCRT-mediated substrate and drug
transport. In Aim 3, we will apply validated gene-editing approaches to predict emerging PfCRT-mediated
resistance and elucidate its functional impact in parasites. Gene-editing studies will focus on PPQ and ADQ in
the context of major global PfCRT variants, as a way to anticipate how mutant PfCRT could evolve new drug
resistance traits, including with isoforms present in high-transmission African settings where drug-resistant
malaria exerts by far its greatest impact. This coordinated research effort combines three Columbia University
groups led by Drs. Mancia, Quick and Fidock, who bring expertise in membrane protein biochemistry and
structure, bioenergetics of membrane transport, and Pf biology including mechanisms of antimalarial drug
resistance, respectively. This highly integrated project has the potential to transform our understanding of how
PfCRT mediates multidrug resistance, by providing powerful advances in deciphering PfCRT structure and
function, delivering new biomarkers of emerging resistance, and identifying antimalarial combinations that
could be used regionally to effectively treat drug-resistant Pf malaria.
恶性疟原虫(PF)中的耐药性,疟疾中最致命的寄生虫威胁近一半
世界的人口与现场分离株的特定寄生虫等位基因的遗传变化有关。
负责PF无性血液阶段(ABS)寄生虫抗性的蛋白质对以前和目前的抗性
使用的一线抗疟药,氯喹(CQ)piperaquine(PPQ)和amodiaquine(ADQ)是48 kDa P.
恶性氯喹抗性转运蛋白(PFCRT)。 CQ,PPQ和ADQ,所有4-氨基喹啉,都消除了
药物敏感的PF ABS寄生虫通过抑制寄生虫介导的产物宿主血红素的排毒
血红蛋白降解,内部消化效果(DV)。 PFCRT位于DV膜中,被认为
通过药物外介导CQ耐药性。我们了解PFCRT的功能以及
PFCRT介导的耐药性的分子基础,由于缺乏原子而受到严重阻碍
使用抗原结合片段(FAB)技术和单粒子冷冻电子
显微镜,我们已经确定了该10-的全长耐CQ 7G8突变体同工型的结构
跨膜蛋白在向内开启构象中分辨率为3.2Å。这些初步数据是
本文介绍,以及使用纳米散发和脂质体中纯化蛋白质的功能测定,以及
基于PFCRT修饰线的寄生虫测定法。在此应用程序中,我们建议复杂定义PFCRT
结构和功能,并将其用于实验测试的预测PFCRT如何进一步的预测
进化以驱动跨疟疾 - 内态区域的多药耐药性的新模式。在AIM 1中,我们将解决
全球变体同工型的PFCRT结构,包括抗疟药CQ,PPQ的复合物
和ADQ和生理基板。在AIM 2中,我们将通过重组实施生物物理方法
蛋白质阐明PFCRT的自然功能并开发PFCRT介导的底物和药物的模型
运输。在AIM 3中,我们将采用验证的基因编辑方法来预测新兴的PFCRT介导
抗性并阐明其在寄生虫中的功能影响。基因编辑研究将集中于PPQ和ADQ
主要全球PFCRT变体的背景,以预测突变体PFCRT如何进化新药
抵抗性状,包括在非洲抗药性的高转移环境中存在的同工型
疟疾的影响最大。这项协调的研究工作结合了三所哥伦比亚大学
由博士领导的小组。曼西亚(Mancia),快速和菲达克(Fidock),他带来了膜蛋白生物化学方面的专业知识
结构,膜传输的生物能学和PF生物学,包括抗疟药机制
电阻分别。这个高度集成的项目有可能改变我们对
PFCRT通过在解密PFCRT结构和
功能,提供新的抗性生物标志物,并确定抗疟疾组合
可以在区域用来有效治疗耐药的PF疟疾。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cryo-electron microscopy analysis of small membrane proteins.
- DOI:10.1016/j.sbi.2020.05.009
- 发表时间:2020-10
- 期刊:
- 影响因子:6.8
- 作者:Nygaard R;Kim J;Mancia F
- 通讯作者:Mancia F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Fidock其他文献
David A Fidock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Fidock', 18)}}的其他基金
Deciphering the role of Plasmodium falciparum plasmepsin 2/3 amplifications in mutant pfcrt-driven piperaquine resistance
破译恶性疟原虫血浆蛋白酶 2/3 扩增在突变体 pfcrt 驱动的哌喹耐药中的作用
- 批准号:
10374934 - 财政年份:2021
- 资助金额:
$ 69.46万 - 项目类别:
Leveraging PfCRT Structure to Discern Function and Predict Emergence of Drug-Resistant Malaria
利用 PfCRT 结构识别功能并预测耐药性疟疾的出现
- 批准号:
10199925 - 财政年份:2019
- 资助金额:
$ 69.46万 - 项目类别:
Leveraging PfCRT Structure to Discern Function and Predict Emergence of Drug-Resistant Malaria
利用 PfCRT 结构识别功能并预测耐药性疟疾的出现
- 批准号:
10443625 - 财政年份:2019
- 资助金额:
$ 69.46万 - 项目类别:
Elucidating the molecular basis of piperaquine resistance in Plasmodium falciparum
阐明恶性疟原虫哌喹耐药的分子基础
- 批准号:
10595160 - 财政年份:2016
- 资助金额:
$ 69.46万 - 项目类别:
Elucidating the molecular basis of piperaquine resistance and the role of altered hemoglobin metabolism in Plasmodium falciparum
阐明恶性疟原虫哌喹耐药性的分子基础以及血红蛋白代谢改变的作用
- 批准号:
9212775 - 财政年份:2016
- 资助金额:
$ 69.46万 - 项目类别:
Elucidating the molecular basis of piperaquine resistance and the role of altered hemoglobin metabolism in Plasmodium falciparum
阐明恶性疟原虫哌喹耐药性的分子基础以及血红蛋白代谢改变的作用
- 批准号:
9127601 - 财政年份:2016
- 资助金额:
$ 69.46万 - 项目类别:
Defining P. falciparum resistance to artemisinin-based combination therapies
恶性疟原虫对青蒿素联合疗法的耐药性的定义
- 批准号:
8788180 - 财政年份:2014
- 资助金额:
$ 69.46万 - 项目类别:
Columbia University Graduate Training Program in Microbiology and Immunology
哥伦比亚大学微生物学和免疫学研究生培训项目
- 批准号:
8742419 - 财政年份:2014
- 资助金额:
$ 69.46万 - 项目类别:
Defining P. falciparum resistance to artemisinin-based combination therapies
恶性疟原虫对青蒿素联合疗法的耐药性的定义
- 批准号:
9319626 - 财政年份:2014
- 资助金额:
$ 69.46万 - 项目类别:
Defining P. falciparum resistance to artemisinin-based combination therapies
恶性疟原虫对青蒿素联合疗法的耐药性的定义
- 批准号:
10372215 - 财政年份:2014
- 资助金额:
$ 69.46万 - 项目类别:
相似国自然基金
基于非洲猪瘟病毒pS273R蛋白泛素-蛋白酶体降解途径阻抑机制理性设计其特异性蛋白水解靶向嵌合体的研究
- 批准号:32373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非洲猪瘟病毒B475L蛋白靶向LMP2抑制抗原递呈的分子机制
- 批准号:32302894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲猪瘟病毒pS273R通过切割G3BP1调控宿主应激颗粒形成的机制
- 批准号:32302893
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗体依赖性增强效应介导非洲猪瘟病毒致病的分子机制
- 批准号:32373024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving Methodologies to Estimate the Impact of Droughts and Floods on African Farmers
改进估计干旱和洪水对非洲农民影响的方法
- 批准号:
23K12480 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluating EEG as a diagnostic and prognostic biomarker in Malawian children with febrile coma
评估脑电图作为马拉维热昏迷儿童的诊断和预后生物标志物
- 批准号:
10523296 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Screening strategies for sexually transmitted infections in a high HIV incidence setting in South Africa
南非艾滋病毒高发地区的性传播感染筛查策略
- 批准号:
10761853 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Understand and mitigating the influence of extreme weather events on HIV outcomes: A global investigation
了解并减轻极端天气事件对艾滋病毒感染结果的影响:一项全球调查
- 批准号:
10762607 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Application of Data Science to Build Research Capacity in Zoonoses and Food-Borne Infections in West Africa
应用数据科学建设西非人畜共患病和食源性感染的研究能力
- 批准号:
10728273 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别: