Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
基本信息
- 批准号:10403537
- 负责人:
- 金额:$ 59.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-10 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAcuteAcute Renal Failure with Renal Papillary NecrosisAffectAmino AcidsAntioxidantsBasic ScienceCardiacCharacteristicsCitric Acid CycleClinicalConsumptionDataDialysis patientsDialysis procedureDistantEchocardiographyElectron Spin Resonance SpectroscopyEnergy MetabolismEssential Amino AcidsFunctional disorderGlutamineGlutathioneGlycolysisGoalsGrantHeartHeart failureImpairmentInjuryInjury to KidneyKidneyLinkMediatingMediator of activation proteinMetabolicMetabolismMindMitochondriaMusMyocardial dysfunctionNephrologyNonesterified Fatty AcidsOrganOxidative PhosphorylationPathway interactionsPatient CarePatientsPhosphorylationPlasmaProductionPublishingReactive Oxygen SpeciesReportingResolutionRespirationStressSuperoxidesSupplementationSyndromeSystemic diseaseTestingTissuesUp-Regulationaerobic glycolysisbaseclinically relevantepidemiologic dataglucose metabolismheart functionimprovedin vivoinhibitormortalitymouse modelnovelpreventwasting
项目摘要
Abstract
The overall goal of this proposal is to determine the mechanisms by which acute kidney injury (AKI) leads to
acute cardiac dysfunction. Clinically, AKI-mediated cardiac dysfunction is known as cardiorenal syndrome type
3 (CRS3). The mechanisms underpinning CRS3 are not well understood and few plausible mediators of CRS3
have been identified. We recently demonstrated that ischemic AKI causes cardiac dysfunction in mice which
was associated with a 50% reduction in cardiac ATP levels. Thus, cardiac energy metabolism and production
is impaired during AKI and is a fundamental characteristic of CRS3. To identify mediators of CRS3, we
examined plasma and cardiac metabolites. We expected to identify increased levels of circulating metabolites
that might affect cardiac energy metabolism. Rather, we found that numerous metabolites necessary to
maintain cardiac energy production and anti-oxidant defense were deficient in the plasma and heart after AKI,
including over a dozen amino acids and the anti-oxidant glutathione. During cardiac stress, amino acids are
essential substrates for ATP production. Glutamine is particularly important since it can be metabolized to
substrates for both ATP and glutathione synthesis. Glutathione is the most abundant anti-oxidant in the heart
and is critical to maintain normal energy production since excess reactive oxygen species (ROS) impairs
mitochondrial function and inhibits oxidative phosphorylation (OXPHOS). OXPHOS occurs within mitochondria
and is normally the major mechanism of cardiac ATP production. Our preliminary data demonstrate that during
AKI: 1) cardiac mitochondrial function and OXPHOS are impaired, 2) cardiac superoxide (O2●-, an ROS) is
significantly increased, 3) glutamine significantly increases cardiac ATP and reduces O2●-. Based on these
data, our overall hypothesis is that the deficiency of energy substrates and glutathione precursors during AKI
results in increased reactive oxygen species, reduced OXPHOS, reduced ATP production, and cardiac
dysfunction. We have 3 Aims. Aim 1: Determine the effect of AKI on cardiac energy metabolism via metabolic
flux analysis. Aim 2: Determine the mechanisms by which glutamine improves cardiac ATP production after
AKI, in vivo, with the hypothesis that glutamine will reduce cardiac O2●-, increase ATP production, and improve
mitochondrial and cardiac function. Aim 3: Determine the substrates of glutamine metabolism that improve
cardiac ATP production after AKI, ex vivo, with the hypothesis that metabolism to glutathione is the primary
mechanism of glutamine benefit. Since the complications of AKI have long been considered to be due to the
accumulation of metabolic wastes and other substances that may be removed by dialysis for patient benefit,
our overall hypothesis that substrate deficiency is a mechanisms of harm is a paradigm shift that challenges
one of the most fundamental notions in nephrology and will have wide ranging implications regarding the care
of patients with AKI, particularly regarding dialysis.
抽象的
该提案的总体目标是确定急性肾损伤 (AKI) 导致的机制
急性心功能不全临床上将AKI介导的心功能不全称为心肾综合征型。
3 (CRS3)。 CRS3 的基础机制尚不清楚,而且 CRS3 的合理介质也很少。
我们最近发现,缺血性 AKI 会导致小鼠心脏功能障碍。
与心脏 ATP 水平降低 50% 相关,从而降低心脏能量代谢和产生。
AKI 期间受损,并且是 CRS3 的基本特征 为了识别 CRS3 的介质,我们。
我们期望检测血浆和心脏代谢物的水平升高。
相反,我们发现许多代谢物是影响心脏能量代谢所必需的。
AKI 后血浆和心脏中缺乏维持心脏能量产生和抗氧化防御的能力,
包括十多种氨基酸和抗氧化谷胱甘肽 在心脏应激期间,氨基酸是重要的。
谷氨酰胺是 ATP 产生的必需底物,因为它可以代谢为 ATP 的必需底物。
ATP 和谷胱甘肽合成的底物 谷胱甘肽是心脏中最丰富的抗氧化剂。
对于维持正常的能量生产至关重要,因为过量的活性氧 (ROS) 会损害
线粒体功能并抑制线粒体内发生的氧化磷酸化 (OXPHOS)。
通常是心脏 ATP 产生的主要机制。我们的初步数据表明,在这一过程中。
AKI:1) 心脏线粒体功能和 OXPHOS 受损,2) 心脏超氧化物(O2●-,一种 ROS)
显着增加,3) 谷氨酰胺显着增加心脏 ATP 并减少 O2●- 基于这些。
根据数据,我们的总体假设是 AKI 期间能量底物和谷胱甘肽前体的缺乏
导致活性氧增加、OXPHOS 减少、ATP 生成减少、心脏功能下降
我们有 3 个目标 目标 1:通过代谢确定 AKI 对心脏能量代谢的影响。
目标 2:确定谷氨酰胺改善心脏 ATP 产生的机制。
AKI,体内,假设谷氨酰胺会减少心脏 O2●-,增加 ATP 生成,并改善
目标 3:确定改善谷氨酰胺代谢的底物。
AKI 后心脏 ATP 的离体产生,假设代谢为谷胱甘肽是主要的
谷氨酰胺获益的机制长期以来一直被认为是 AKI 的并发症所致。
代谢废物和其他物质的积累可以通过透析去除以造福于患者,
我们的总体假设是底物缺乏是一种危害机制,这是一个挑战的范式转变
肾脏病学最基本的概念之一,将对护理产生广泛的影响
AKI 患者,尤其是透析患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah g Faubel其他文献
Sarah g Faubel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah g Faubel', 18)}}的其他基金
Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
- 批准号:
10600058 - 财政年份:2021
- 资助金额:
$ 59.25万 - 项目类别:
Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
- 批准号:
10217436 - 财政年份:2021
- 资助金额:
$ 59.25万 - 项目类别:
The role of acute kidney in the pathogenesis of sepsis from pneumonia
急性肾在肺炎脓毒症发病机制中的作用
- 批准号:
9003708 - 财政年份:2016
- 资助金额:
$ 59.25万 - 项目类别:
Mechanisms of susceptibility to sepsis after acute kidney injury
急性肾损伤后脓毒症易感性机制
- 批准号:
9130408 - 财政年份:2015
- 资助金额:
$ 59.25万 - 项目类别:
The anti-inflammatory response after acute kidney injury
急性肾损伤后的抗炎反应
- 批准号:
8971956 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
The anti-inflammatory response after acute kidney injury
急性肾损伤后的抗炎反应
- 批准号:
8624513 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
The anti-inflammatory response after acute kidney injury
急性肾损伤后的抗炎反应
- 批准号:
8442169 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Mitochondrial Metabolic Dysfunction in Chronic Kidney Disease
慢性肾脏病线粒体代谢功能障碍的机制
- 批准号:
10862480 - 财政年份:2023
- 资助金额:
$ 59.25万 - 项目类别:
AKR1a1 as a novel therapeutic target for Non-Alcoholic Fatty Liver Disease
AKR1a1作为非酒精性脂肪肝的新治疗靶点
- 批准号:
10385931 - 财政年份:2022
- 资助金额:
$ 59.25万 - 项目类别:
AKR1a1 as a novel therapeutic target for Non-Alcoholic Fatty Liver Disease
AKR1a1作为非酒精性脂肪肝的新治疗靶点
- 批准号:
10559523 - 财政年份:2022
- 资助金额:
$ 59.25万 - 项目类别:
Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
- 批准号:
10600058 - 财政年份:2021
- 资助金额:
$ 59.25万 - 项目类别:
Cardiac dysfunction after ischemic AKI in mice
小鼠缺血性 AKI 后的心脏功能障碍
- 批准号:
10217436 - 财政年份:2021
- 资助金额:
$ 59.25万 - 项目类别: