Isocitrate dehydrogenase (IDH) mutations as drivers of organelle stress and dysfunction"
异柠檬酸脱氢酶 (IDH) 突变是细胞器应激和功能障碍的驱动因素"
基本信息
- 批准号:10653827
- 负责人:
- 金额:$ 37.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAffectAutomobile DrivingCatalysisChemicalsChondrosarcomaClinicCommunicationCytosolDNADiseaseDrug TargetingEnzymesFunctional disorderGliomaGoalsGrantHealthIsocitrate DehydrogenaseIsocitratesKineticsLipidsLocationMalignant NeoplasmsMetabolicMitochondriaModificationMolecularMutationNADPOrganellesOxidative StressPathway interactionsPatientsPoint MutationProductionPropertyProtein DynamicsRegulationReportingResearchRoleSignal TransductionStressTechnologyTherapeutically TargetableTumor Suppressor GenesVariantWorkalpha ketoglutaratehistone demethylaseinhibitorlipid biosynthesisloss of functionmutantpatient prognosisperoxisomepredictive toolsprogramstool
项目摘要
ABSTRACT/SUMMARY
The consequences of mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 in cancer are unusual. Though
these mutations confer a loss of function of the normal activity of the NADP+-dependent conversion of isocitrate
to α-ketoglutarate (αKG), mutant IDH is more of an oncogene than tumor suppressor, as a neomorphic activity
is also conferred: the NADPH-dependent production of oncometabolite D-2-hydroxyglutarate (D2HG) from αKG.
D2HG inhibits αKG-dependent enzymes like DNA and histone demethylases, and NADPH depletion results in
oxidative stress. A variety of point mutations affecting residue R132 in IDH1 can grant these catalytic properties,
causing prominent structural modifications that allow mutant IDH1 to be a bona fide drug target. Indeed, a se-
lective allosteric mutant IDH1 inhibitor is now in the clinic. Both mutant and WT IDH1 localize to the cytosol and
peroxisomes, while IDH2 is found in the mitochondria, raising the possibility of organelle-specific consequences
of IDH mutations, though this has not yet been explored. Interestingly, there is a communication pipeline between
the peroxisomes and mitochondria in that they share an interconnected role in lipid processing and mitigation of
oxidative stress, though the role of IDH in this communication is not yet known. To date, several limitations have
restricted the rigor of mutant IDH studies. First, the catalytic and inhibition profile for R132H IDH1 is extrapolated
to other disease-relevant IDH1 mutants, though we show several mutants have very unique profiles. Second,
the role of NADPH depletion, and thus oxidative stress, is often overlooked in favor of studying consequences
of D2HG. Third, studies focus on the global/cytosolic contributions of mutant IDH1, ignoring its role of sole
NADPH and αKG producer in this organelle. However, we report evidence of dysfunctional lipid biosynthetic
pathways in the peroxisomes upon introduction of cellular IDH1 mutations. The overall goal of our research
program is to determine the mechanisms of metabolic enzyme catalysis, regulation, inhibition, and cellular/orga-
nellular function in health and disease, from the chemical to the cellular levels. By leveraging kinetic, structural,
cellular, and -omics technologies, we can establish the unique consequences of disease-relevant mutational
variants in metabolic enzymes. Here, we have identified critical questions to illuminate the role of mutant IDH1
in disease: 1) How do protein dynamics affect IDH1 catalysis and inhibition? 2) What are the effects of oxidative
stress on IDH1 and IDH2? 3) What are the organelle-specific consequences of IDH1 mutations? 4) What are the
roles of IDH1 mutations in organelle crosstalk? Through this work, we will uncover fundamental catalytic and
regulatory strategies affecting WT and mutant IDH activity, determine the role of IDH1 in the peroxisomes and
identify the unique consequences of mutation at this location, and establish the role of mutant IDH1 in facilitating
peroxisomal/mitochondrial lipid biosynthesis and oxidative stress signalling. Upon completing this work we will
generate valuable new tools, and identify pathways or mechansims that may be therapeutically targetable.
摘要/摘要
癌症中异位酸脱氢酶1(IDH1)和IDH2突变的后果是不寻常的。尽管
这些突变会导致NADP+依赖性依赖性转化率的正常活性的功能丧失
至α-酮戊二酸(αkg),突变体IDH更像是癌基因,而不是肿瘤抑制剂
还授予:αkg的NADPH依赖性产生的NADPH依赖性产生(D2HG)。
D2HG抑制αKG依赖性酶(例如DNA和组蛋白脱甲基酶),NADPH耗竭导致
氧化应激。影响IDH1中居住R132的各种点突变可以授予这些催化特性,
引起突出的结构修饰,使突变体IDH1成为真正的药物靶标。确实,一个
讲座变构突变IDH1抑制剂现在在诊所中。突变体和WT IDH1都位于细胞质和
过氧化物体,而在线粒体中发现IDH2,从而增加了细胞器特异性后果的可能性
IDH突变,尽管尚未探索。有趣的是,在
过氧化物体和线粒体是因为它们在脂质加工和缓解措施中具有相互联系的作用
氧化应激,尽管IDH在这种交流中的作用尚不清楚。迄今为止,有几个限制有
限制了突变IDH研究的严格性。首先,R132H IDH1的催化和抑制作用被推断
对于其他与疾病相关的IDH1突变体,尽管我们显示了几个突变体具有非常独特的特征。第二,
NADPH部署的作用以及因此氧化应激,通常被忽略为研究后果
D2HG。第三,研究重点是突变体IDH1的全球/胞质贡献,忽略了其唯一的作用
该细胞器中的NADPH和αkg生产者。但是,我们报告了功能失调脂质生物合成的证据
引入细胞IDH1突变时,过氧化物体中的途径。我们研究的总体目标
计划是确定代谢酶催化,调节,抑制和细胞/ORGA-的机制
从化学物质到细胞水平的健康和疾病中的Nellular功能。通过利用动力学,结构,
蜂窝和 - 组技术,我们可以建立与疾病相关的突变的独特后果
代谢酶的变体。在这里,我们确定了关键问题以阐明突变体IDH1的作用
疾病:1)蛋白质动力学如何影响IDH1催化和抑制作用? 2)氧化的影响是什么
对IDH1和IDH2的压力? 3)IDH1突变的有机特异性后果是什么? 4)什么是
IDH1突变在细胞器串扰中的作用?通过这项工作,我们将发现基本的催化和
影响WT和突变体活动的监管策略,确定IDH1在过氧化物体中的作用
确定该位置突变的独特后果,并确定突变体IDH1在促进中的作用
过氧/线粒体脂质生物合成和氧化应激信号传导。完成这项工作后,我们将
生成有价值的新工具,并确定可能具有热目标的途径或机制。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Capturing the Dynamic Conformational Changes of Human Isocitrate Dehydrogenase 1 (IDH1) upon Ligand and Metal Binding Using Hydrogen-Deuterium Exchange Mass Spectrometry.
使用氢-氘交换质谱法捕获配体和金属结合时人异柠檬酸脱氢酶 1 (IDH1) 的动态构象变化。
- DOI:10.1021/acs.biochem.2c00636
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Sabo,KaitlynA;Albekioni,Elene;Caliger,Danielle;Coleman,NalaniJ;Thornberg,Ella;AvellanedaMatteo,Diego;Komives,ElizabethA;Silletti,Steve;Sohl,ChristalD
- 通讯作者:Sohl,ChristalD
Probing altered enzyme activity in the biochemical characterization of cancer.
- DOI:10.1042/bsr20212002
- 发表时间:2022-02-25
- 期刊:
- 影响因子:4
- 作者:Adam MAA;Sohl CD
- 通讯作者:Sohl CD
The Effects of Prune Extract on Cellular Models of Bone Cancer.
西梅提取物对骨癌细胞模型的影响。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Miller,Chelsie;Adam,Mowaffaq;Chao,Grace;Hooshmand,Shirin;Sohl,Christal
- 通讯作者:Sohl,Christal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christal Dyane Sohl其他文献
Christal Dyane Sohl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christal Dyane Sohl', 18)}}的其他基金
Isocitrate dehydrogenase (IDH) mutations as drivers of organelle stress and dysfunction"
异柠檬酸脱氢酶 (IDH) 突变是细胞器应激和功能障碍的驱动因素"
- 批准号:
10227739 - 财政年份:2020
- 资助金额:
$ 37.63万 - 项目类别:
"Isocitrate dehydrogenase (IDH) mutations as drivers of organelle stress and dysfunction"
“异柠檬酸脱氢酶 (IDH) 突变是细胞器应激和功能障碍的驱动因素”
- 批准号:
10380403 - 财政年份:2020
- 资助金额:
$ 37.63万 - 项目类别:
Isocitrate dehydrogenase (IDH) mutations as drivers of organelle stress and dysfunction"
异柠檬酸脱氢酶 (IDH) 突变是细胞器应激和功能障碍的驱动因素"
- 批准号:
10434769 - 财政年份:2020
- 资助金额:
$ 37.63万 - 项目类别:
Isocitrate dehydrogenase (IDH) mutations as drivers of organelle stress and dysfunction"
异柠檬酸脱氢酶 (IDH) 突变是细胞器应激和功能障碍的驱动因素"
- 批准号:
10025624 - 财政年份:2020
- 资助金额:
$ 37.63万 - 项目类别:
The molecular mechanism of isocitrate dehydrogenase (lDH) mutations in cancer
异柠檬酸脱氢酶(IDH)突变在癌症中的分子机制
- 批准号:
9318472 - 财政年份:2015
- 资助金额:
$ 37.63万 - 项目类别:
The molecular mechanism of isocitrate dehydrogenase (lDH) mutations in cancer
异柠檬酸脱氢酶(IDH)突变在癌症中的分子机制
- 批准号:
8752659 - 财政年份:2014
- 资助金额:
$ 37.63万 - 项目类别:
Kinetics of DNA polymerase gamma upon mutation and nucleoside analog exposure
突变和核苷类似物暴露后 DNA 聚合酶 γ 的动力学
- 批准号:
8327895 - 财政年份:2011
- 资助金额:
$ 37.63万 - 项目类别:
Kinetics of DNA polymerase gamma upon mutation and nucleoside analog exposure
突变和核苷类似物暴露后 DNA 聚合酶 γ 的动力学
- 批准号:
8538465 - 财政年份:2011
- 资助金额:
$ 37.63万 - 项目类别:
Kinetics of DNA polymerase gamma upon mutation and nucleoside analog exposure
突变和核苷类似物暴露后 DNA 聚合酶 γ 的动力学
- 批准号:
8199882 - 财政年份:2011
- 资助金额:
$ 37.63万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Multi-functional cellular therapies to overcome tumor heterogeneity and limit toxicity in acute myeloid leukemia
多功能细胞疗法克服肿瘤异质性并限制急性髓系白血病的毒性
- 批准号:
10679763 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Molecular Mechanisms of MDS pathogenesis with aging
MDS随衰老发病的分子机制
- 批准号:
10737177 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Investigating dysregulation of hematopoietic stem cell support in sickle cell disease mesenchymal stromal cells
研究镰状细胞病间充质基质细胞中造血干细胞支持的失调
- 批准号:
10752050 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
The role of DPF2 stability in SMARCB1-deficient cancers
DPF2 稳定性在 SMARCB1 缺陷型癌症中的作用
- 批准号:
10751414 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Interrogating oncogene-dependency and mutation order in FLT3 mutant AML
探究 FLT3 突变 AML 中的癌基因依赖性和突变顺序
- 批准号:
10669825 - 财政年份:2022
- 资助金额:
$ 37.63万 - 项目类别: