Optimizing Efficiency and Quality of Brachytherapy for Cervical Cancer using Machine Learning Based Automation
使用基于机器学习的自动化优化宫颈癌近距离放射治疗的效率和质量
基本信息
- 批准号:10645003
- 负责人:
- 金额:$ 24.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-14 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAlgorithmsAnatomyAutomationBlindedBrachytherapyCervicalCessation of lifeClinicalClinical TreatmentClinical TrialsClinical Trials DesignComplexConsumptionCountryDataDecision MakingDoseEthicsEvaluationFoundationsFutureGoalsGrantHumanImageInferiorInstitutionKnowledgeLabelLinkMachine LearningMalignant NeoplasmsMalignant neoplasm of cervix uteriMalignant neoplasm of prostateManualsMeasuresMedicalMentorsMentorshipMethodsModelingModernizationOrganOutputPatient imagingPatient-Focused OutcomesPatientsPhysiciansPositioning AttributeProcessPublic HealthRadiationRadiation Dose UnitRadiation therapyRadioactiveRadiotherapy ResearchResearchResearch PersonnelResourcesSedation procedureSourceStandardizationStatistical Data InterpretationStatistical ModelsSystemTechniquesTechnologyTestingTimeToxic effectTrainingTraining ProgramsValidationVariantWomanWorkautomated treatment planningcancer therapycancer typecareer developmentclinical efficacyclinical implementationcombatcomputer programcomputerized toolsconvolutional neural networkdeep learningefficacy evaluationexperienceimage processingimplementation barriersimplementation scienceimprovedinnovationknowledge basemachine learning modelmalignant breast neoplasmoptimal treatmentspredictive modelingpressureprospectiveskillsstandard of carestatisticstechnology validationthree-dimensional modelingtooltreatment planningtumor
项目摘要
Current treatment planning for brachytherapy of cervical cancer is performed with manual techniques that are
both time-consuming and subjective. Manual treatment planning takes 95 minutes on average and occurs
while patients are sedated, and the quality of the treatments is highly dependent on the expertise of the
physician. Unfortunately, the resource intensiveness and need for specialized expertise are barriers to
implementation of brachytherapy, and as a result many centers are not offering this essential treatment for
cervical cancer. Alarmingly, this rapid decline in brachytherapy utilization has been linked to 12% reductions in
patient survival. To overcome the barriers to delivering highly effective brachytherapy, there is a critical need
for tools that improve the efficiency and reduce the complexity of treatment planning for each patient. My long-
term goal is to become an independent investigator focused on automating brachytherapy cancer treatment
with machine learning, producing button-click solutions that will significantly upgrade the quality of
brachytherapy and combat declining utilization. I have significant experience in modeling, image processing
and computer programming and I want to build on this skillset with a training program that will prepare me for
independence. I have assembled an exceptional mentorship team, which includes expertise in machine
learning, clinical trials, implementation science and statistics. We formed a training plan to gain expertise in (1)
deep learning, (2) advanced statistical analysis, (3) design of clinical trials and implementation of technology
and (4) research career development. The research goal of this proposal is to develop a tool for fully
automated cervical brachytherapy treatment planning, which uses machine learning models to make
predictions for new patients. The central hypothesis is that automated planning using machine learning will
generate non-inferior or even superior plans in significantly reduced treatment planning time. This hypothesis
will be tested with the following specific aims: (1) Develop machine learning models, which use labelled patient
images to predict radiation dose; (2) Develop and evaluate efficacy of a pipeline for automated brachytherapy
planning; and (3) Prospectively measure the efficiency and clinical impact of automated brachytherapy
planning. For Aim 1, convolutional neural networks will be developed to predict 3D radiation dose from
imaging. Aim 2 will convert predicted doses into deliverable treatment plans using gradient-descent
optimization to determine optimal treatment parameters. Aim 3 will provide an end-to-end validation of the
automated planning by testing it in real-time clinical workflow. This work is innovative because it presents the
first clinical validation of an automated treatment planning system for brachytherapy of cervical cancer. The
proposed research is significant because it will revolutionize the current brachytherapy paradigm by applying
machine learning to automate and standardize time-consuming, manual processes. This work is a key step
towards my future R01 submission on multi-institutional implementation of automated cervical brachytherapy.
目前宫颈癌近距离放射治疗的治疗计划是通过手动技术进行的,这些技术
既耗时又主观。手动治疗计划平均需要 95 分钟才能完成
当患者服用镇静剂时,治疗的质量在很大程度上取决于医生的专业知识
医生。不幸的是,资源密集度和对专业知识的需求是实现这一目标的障碍。
实施近距离放射治疗,因此许多中心不提供这种基本治疗
宫颈癌。令人担忧的是,近距离放射治疗利用率的迅速下降与 12% 的减少有关
患者生存。为了克服提供高效近距离放射治疗的障碍,迫切需要
寻找能够提高每位患者治疗计划的效率并降低其复杂性的工具。我的长-
短期目标是成为一名专注于自动化近距离放射治疗癌症治疗的独立研究者
通过机器学习,生成按钮式解决方案,将显着提高质量
近距离放射治疗和战斗利用率下降。我在建模、图像处理方面拥有丰富的经验
和计算机编程,我想通过一个培训计划来巩固这一技能,为我做好准备
独立。我组建了一支出色的指导团队,其中包括机器方面的专业知识
学习、临床试验、实施科学和统计。我们制定了一项培训计划,以获得 (1) 方面的专业知识
深度学习,(2)高级统计分析,(3)临床试验设计和技术实施
(4) 研究职业发展。本提案的研究目标是开发一种工具来充分
自动化颈椎近距离放射治疗治疗计划,使用机器学习模型来制定
对新患者的预测。中心假设是使用机器学习的自动规划将
在显着减少治疗计划时间的情况下生成不劣质甚至更优的计划。这个假设
将针对以下具体目标进行测试:(1)开发机器学习模型,该模型使用标记的患者
预测辐射剂量的图像; (2) 开发和评估自动近距离放射治疗管道的功效
规划; (3) 前瞻性衡量自动近距离放射治疗的效率和临床影响
规划。对于目标 1,将开发卷积神经网络来预测 3D 辐射剂量
成像。目标 2 将使用梯度下降将预测剂量转化为可实施的治疗计划
优化以确定最佳治疗参数。目标 3 将提供端到端验证
通过在实时临床工作流程中进行测试来实现自动化规划。这项工作具有创新性,因为它呈现了
宫颈癌近距离放射治疗自动化治疗计划系统的首次临床验证。这
拟议的研究意义重大,因为它将通过应用彻底改变当前的近距离放射治疗范式
机器学习可实现耗时的手动流程的自动化和标准化。这项工作是关键一步
面向我未来提交的关于多机构实施自动颈椎近距离放射治疗的 R01。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandra Michelle Meyers其他文献
Sandra Michelle Meyers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandra Michelle Meyers', 18)}}的其他基金
Optimizing Efficiency and Quality of Brachytherapy for Cervical Cancer using Machine Learning Based Automation
使用基于机器学习的自动化优化宫颈癌近距离放射治疗的效率和质量
- 批准号:
10351221 - 财政年份:2022
- 资助金额:
$ 24.78万 - 项目类别:
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别: