Safer lung cancer radiotherapy delivery using novel artificial intelligence methods
使用新颖的人工智能方法更安全地进行肺癌放射治疗
基本信息
- 批准号:10646140
- 负责人:
- 金额:$ 43.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnatomyAreaArtificial IntelligenceCancer EtiologyCardiotoxicityCessation of lifeCharacteristicsChestClinicalCollaborationsCombination immunotherapyCombined Modality TherapyComplicationConeDangerousnessData SetDiseaseDoseEnsureEquipmentEsophagusGeometryGoalsHeartImageImmunotherapyLeadLearningLinkLungLung CAT ScanLung NeoplasmsMagnetic Resonance ImagingMalignant neoplasm of lungManualsMedalMediastinumMethodologyMethodsModalityModelingMonitorMorbidity - disease rateNon-Small-Cell Lung CarcinomaNormal tissue morphologyOrganPatient CarePatientsPositioning AttributePrimary NeoplasmPublishingPulmonary InflammationRadiationRadiation Dose UnitRadiation OncologistRadiation OncologyRadiation Therapy Oncology GroupRadiation therapyRecurrenceResearchRiskRisk-Benefit AssessmentSafetyScanningShapesSiteSoftware ToolsSourceStatistical ModelsSurvival RateSystemSystemic TherapyTechnologyTestingThe Cancer Imaging ArchiveTimeTissuesToxic effectTrainingTreatment-related toxicityUncertaintyUnresectableWorkWorkloadacute toxicityartificial intelligence methodautomated segmentationautomated treatment planningcancer radiation therapychemoradiationchemotherapyclinically relevantcohortcone-beam computed tomographydeep learningeffective therapyfeasibility testingimage guided radiation therapyimaging studyimprovedimproved outcomeinnovationlearning strategylymph nodesnovelradiation responsesimulationsoft tissuestandard carestandard of caretooltreatment planningtumor
项目摘要
SUMMARY
Lung cancer is the leading cause of cancer-related deaths in the U.S. Curative radiotherapy + chemotherapy is
the standard of care for patients with inoperable or unresectable disease that has spread beyond the primary
tumor to the lymph nodes. Unfortunately, this treatment approach has a high recurrence of 15%-40% and
advanced treatments including immunotherapy combined with radiation increase toxicity to organs. Spillover
radiation to normal organs at risk (OAR) results from treatment margins to account for uncertainty in localizing
tumors and OARs. Despite being part of standard equipment, information from in-treatment room cone-beam
computed tomography scans (CBCTs) is currently used only in limited ways for patient positioning during
treatment, without simultaneous online localization of the tumor and each OAR. This proposal will use innovative
artificial intelligence (AI) methods, that have been trained from both CT and magnetic resonance imaging (MRI)
studies, to create auto-segmentation tools that can accurately localize the tumor and key OARs online at
treatment setup.
The proposed novel AI methodology is called “Cross-Modality Educed Learning” or CMEDL
(‘c-medal’). The key advantage of CMEDL is that MRI datasets, even from different patients, can be used, to
guide the CT/CBCT network and “learn” to extract features that emphasize the difference between tissue types
and produces accurate segmentations even in areas with little inherent contrast such as the mediastinum.
For
the first time, the clinical utility of what could be called AI-Guided Radiotherapy (AIGRT) segmentation tools will
be systematically studied in relation to their potential impact on treatment margin reduction and normal tissue
toxicity modeling for longitudinally segmented tumor and healthy tissues on CBCTs. Proposed AIGRT tools
would provide increased geometric confidence as well as provide a better basis for an after-delivery estimate of
delivered dose, and treatment toxicity, enabling better risk-benefit assessments for potential treatment
adaptations. Aim 1: Apply CMEDL methodology to develop lung tumor and OAR segmentations on planning
CTs. Aim 2: Extend the CMEDL methodology to longitudinally segment tumors and OARs on weekly CBCTs,
incorporating patient-specific anatomic and shape priors from planning CTs. Aim 3: Determine whether CMEDL
can enable improved (safer) lung cancer radiotherapy dose characteristics by performing automated planning
and delivery simulations, using in-house planning system. Project goal: To develop and rigorously test AIGRT
tools for lung cancer radiotherapy treatments. Potential impact: If successful, these innovative AI tools could be
deployed routinely, enabling (1) smaller margins and less radiotherapy toxicity for patients, including those with
very difficult-to-treat centrally located tumors and (2) providing tools for monitoring the need for plan changes.
These AIGRT tools could potentially be deployed to other disease sites, and once established be made widely
available as a pragmatic, generalizable technology for geometry guidance throughout the radiation treatment.
概括
肺癌是美国治愈性放疗 +化疗的主要原因
无法使用或无法切除疾病的患者的护理标准已扩散到原发性范围之外
不幸的是,淋巴结的肿瘤。
包括免疫疗法在内的晚期治疗和辐射增加对器官的毒性增加。
对处于危险的正常器官(OAR)的辐射是由治疗余量引起的,以解释本地化的不确定性
尽管是标准设备的一部分,但肿瘤和桨
目前,计算机断层扫描(CBCTS)仅以有限的方式用于定位
治疗,不同时在线定位肿瘤和每个桨。
从CT和磁共振成像(MRI)所获得的人工智能(AI)方法
研究,创建自动分割工具,可以准确地将肿瘤定位和关键的桨在线定位
治疗设置。
拟议的小说AI方法称为“经过跨模式教育的学习”或CMEDL
(“ C-Medal”)。
指导CT/CBCT网络,并“学习”提取强调组织组织类型之间扩展的特征
并在诸如纵隔等效率上的对比度中也会产生准确的分割。
为了
第一次,称为AI引导放疗(AIGRT)分割工具的临床实用性将
要系统地研究其潜在对治疗余量减小和正常组织的影响
CBCT上纵向分割的肿瘤和健康组织的毒性建模。
将提供增加的几何置信度,并为交付后估算提供更好的基础
提供的剂量,毒性和处理毒性,从而可以更好地评估潜在治疗的风险效益
适应。目的1:应用CMEDL方法论
CTS。
纳入特定于患者的解剖学和塑造CTS的先验。
可以通过执行自动化计划来改善(更安全)的肺癌放疗剂量特征
使用内部计划系统的交付模拟。
肺癌放射治疗的工具。
常规部署,实现(1)较小的边缘和较少的放射疗法毒素。
非常难以治疗的肿瘤中心肿瘤和(2)提供用于监测需要的工具的工具。
这些Aigrt Toold可能会部署到其他疾病部位,并一旦建立广泛地建立
可作为用于辐射处理的几何形状的务实,可概括的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harini Veeraraghavan其他文献
Harini Veeraraghavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 43.63万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 43.63万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 43.63万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 43.63万 - 项目类别: