Mechanisms of coronary flow heterogeneity: Implications for coronary sinus occlusion therapy
冠状动脉血流异质性的机制:对冠状窦封堵治疗的影响
基本信息
- 批准号:10645096
- 负责人:
- 金额:$ 68.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAffectAnatomyAnimalsBalloon OcclusionBiologicalBlood VesselsBlood capillariesBlood flowCardiacChronicClinical ResearchComputer ModelsConsumptionCoronaryCoronary ArteriosclerosisCoronary CirculationCoronary StenosisCoronary heart diseaseCoronary sinus structureCouplingDataDiagnosisDiffuseDiseaseEffectivenessFamily suidaeFoundationsGenesHealthHeartHeterogeneityHigh Performance ComputingHomeostasisInterventionIschemiaKnowledgeLengthLiquid substanceMeasurementMechanicsMedical ImagingMetabolicModelingMorphologyMyocardialMyocardiumNatureOrganOutcomeOxygenOxygen ConsumptionPathologicPatient SelectionPatientsPercutaneous Transluminal Coronary AngioplastyPerfusionPhysicsPropertyRefractoryRegional Blood FlowRiskRoleScientific Advances and AccomplishmentsSocietiesSolidTherapeuticTimeTissuesTranslatingTreatment EffectivenessTreesVascular SystemVascular blood supplyVenousWorkameroidanimal databiophysical modelclinical practiceclinically relevantclinically significantcomputer frameworkcoronary vasculatureeffective therapyexperimental studyin vivomathematical modelnovelporcine modelpressureregional differencerestrainttheoriestreatment optimization
项目摘要
ABSTRACT
Significant spatial heterogeneity of coronary blood flow exists in the normal heart and it is exaggerated in
coronary heart disease (CHD). Despite the significant clinical relevance of ischemia in CHD, the physical and
biological determinants of spatial heterogeneity of coronary blood flow in health and disease remain uncertain.
As a result, the mechanisms of some treatments, such as coronary sinus (CS) occlusion, pulsatile intermittent
coronary sinus (CS) occlusion (PICSO) and selective auto-retroperfusion (SARP), are also not well understood.
Advances in high-performance computing now make it possible to attempt anatomically realistic distributive
mathematical models, where morphological details of the coronary vascular system are considered to truly
elucidate the spatial heterogeneity of flow. Hence, our general objective in this proposal is to develop a validated
full model of an autoregulated coronary circulation based on anatomically accurate 3D data in a dynamic model
of the beating heart; one that integrates myocardium-vessel interaction (MVI) and vasoreactivity, can explain the
spatial heterogeneity of coronary blood flow in ischemia, and elucidate the rationale for these CS interventions.
The validated model will illuminate clinically significant mechanisms underlying the redistribution of coronary flow
in ischemia and the mechanisms of CS interventions. Our central hypothesis is that regional differences in
myocardial oxygen (O2) demand produce spatial heterogeneity in coronary flow and that ischemia increases flow
heterogeneity by compromising MVI and autoregulation. Due to inherent difficulties associated with
subendocardial measurements in vivo, the absence of a validated biophysical model of the coronary circulation
has been a critical barrier to progress. Our proposal addresses this barrier and has the potential to advance
scientific knowledge in multi-scale, multi-physics modeling and, ultimately, clinical practice in diagnosis and
treatment of CHD. Accordingly, the three Specific Aims are to: 1) Develop an experimentally validated, physics-
based computational framework coupling autoregulated coronary circulation with cardiac mechanics. 2)
Elucidate the mechanical mechanisms of subendocardial vulnerability to ischemia. 3) Determine the mechanical
mechanism of action of CSO, PICSO and SARP as well as factors affecting these treatments. This proposal
takes an integrated approach (theory, computational models, and experiments) to elucidate the relationship
between spatial heterogeneity of perfusion and cardiac mechanical work, autoregulation, and O2 consumption
under pathological and treatment conditions. The proposed work will produce a novel computational framework
that will be used to elucidate the key factors controlling subendocardial vulnerability in ischemia and the
mechanism of actions of CSO, PICSO and SARP. The biophysical modeling framework will also serve as a
foundation for constructing patient-specific heart model based on standard medical imaging to assist in diagnosis
and treatment of CHD
抽象的
正常心脏中冠状动脉血流存在显着的空间异质性,而在正常心脏中这种异质性被夸大了。
冠心病(CHD)。尽管缺血与冠心病具有显着的临床相关性,但身体和
健康和疾病中冠状动脉血流空间异质性的生物决定因素仍然不确定。
因此,一些治疗的机制,如冠状窦 (CS) 闭塞、脉动间歇性治疗
冠状窦 (CS) 闭塞 (PICSO) 和选择性自动逆灌注 (SARP) 也尚未得到充分了解。
高性能计算的进步现在使得尝试解剖学上现实的分布成为可能
数学模型,其中冠状血管系统的形态细节被认为是真实的
阐明流动的空间异质性。因此,我们在本提案中的总体目标是开发一个经过验证的
基于动态模型中解剖学精确 3D 数据的自动调节冠脉循环的完整模型
跳动的心脏;一种整合了心肌-血管相互作用(MVI)和血管反应性的方法,可以解释
缺血时冠状动脉血流的空间异质性,并阐明这些 CS 干预措施的基本原理。
经过验证的模型将阐明冠状动脉血流重新分布的临床重要机制
缺血和 CS 干预机制。我们的中心假设是,地区差异
心肌氧 (O2) 需求会产生冠状动脉血流的空间异质性,并且缺血会增加血流
通过损害 MVI 和自动调节来实现异质性。由于固有的困难
体内心内膜下测量,缺乏经过验证的冠状循环生物物理模型
一直是进步的关键障碍。我们的提案解决了这一障碍并有潜力推进
多尺度、多物理建模的科学知识,以及最终的诊断和临床实践
治疗冠心病。因此,三个具体目标是: 1) 开发一种经过实验验证的物理-
基于计算框架耦合自动调节冠状动脉循环与心脏力学。 2)
阐明心内膜下易受缺血影响的机械机制。 3)确定机械
CSO、PICSO 和 SARP 的作用机制以及影响这些治疗的因素。这个提议
采用综合方法(理论、计算模型和实验)来阐明这种关系
灌注的空间异质性与心脏机械功、自动调节和 O2 消耗之间
在病理和治疗条件下。拟议的工作将产生一个新颖的计算框架
这将用于阐明控制缺血和心内膜下脆弱性的关键因素
CSO、PICSO 和 SARP 的行动机制。生物物理建模框架也将作为
为基于标准医学影像构建患者特异性心脏模型辅助诊断奠定基础
和冠心病的治疗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GHASSAN S KASSAB其他文献
GHASSAN S KASSAB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GHASSAN S KASSAB', 18)}}的其他基金
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
- 批准号:
9381294 - 财政年份:2017
- 资助金额:
$ 68.11万 - 项目类别:
Suction Device for Control and Accuracy of Transseptal Access
用于控制和精确进行房间隔进入的抽吸装置
- 批准号:
9346212 - 财政年份:2017
- 资助金额:
$ 68.11万 - 项目类别:
Roles of Ischemia and mechanical dyssynchrony in optimizing CRT responses
缺血和机械不同步在优化 CRT 反应中的作用
- 批准号:
9914123 - 财政年份:2017
- 资助金额:
$ 68.11万 - 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
- 批准号:
8880455 - 财政年份:2013
- 资助金额:
$ 68.11万 - 项目类别:
Micro-Mechanical Role of Hypertension in Intimal Hyperplasia
高血压在内膜增生中的微机械作用
- 批准号:
8583495 - 财政年份:2013
- 资助金额:
$ 68.11万 - 项目类别:
CT-Based Diagnosis of Diffuse Coronary Artery Disease
基于 CT 的弥漫性冠状动脉疾病诊断
- 批准号:
8274323 - 财政年份:2009
- 资助金额:
$ 68.11万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 68.11万 - 项目类别: