Identifying New Therapeutics and Molecular Mechanisms in Congenital Disorders of Glycosylation.
确定先天性糖基化疾病的新疗法和分子机制。
基本信息
- 批准号:10644811
- 负责人:
- 金额:$ 11.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAffectApoptosisBiologicalBiological AssayCandidate Disease GeneCell Culture TechniquesCell LineCell ProliferationCell modelCellsCellular Metabolic ProcessCessation of lifeClinical TrialsCongenital disorders of glycosylationDefectDevelopmentDevelopmental Delay DisordersDiseaseDisease modelDown-RegulationDrosophila genusDrug ScreeningEnsureEnzymesEpilepsyEyeFacultyFutureGene ExpressionGenesGeneticGlycobiologyGoalsHealthHumanHuman Cell LineIn VitroInborn Errors of MetabolismIndividualInstitutionInterventionLearningLinkMass Spectrum AnalysisMentorsMentorshipMetabolismMicroscopyModelingMolecularMolecular BiologyMutationOrganismPathway interactionsPatientsPharmaceutical PreparationsPre-Clinical ModelProcessProliferatingProteinsRNA InterferenceRare DiseasesResearchSeizuresStressTechniquesTestingTherapeuticTherapeutic UsesTrainingTranslatingUniversitiesUtahWorkWritingYeastscareercommon symptomdevelopmental diseasedisease phenotypedrug repurposingdrug use screeningendoplasmic reticulum stressflygenetic manipulationglycosylationimprovedin vivoin vivo Modelloss of functionloss of function mutationmembermetabolomicsnew therapeutic targetnovel therapeuticspatient populationprotein expressionreduce symptomssmall moleculesmall molecule librariessugartherapeutic evaluationtool
项目摘要
Glycosylation is an essential biological pathway that involves the post- or co-translational addition of sugar
moieties to proteins. Congenital Disorders of Glycosylation (CDGs) are rare developmental disorders caused by
inborn errors of metabolism in glycosylation pathways. CDGs lack good treatment options, and this is typically
due to poorly understood mechanisms and difficulty in establishing clinical trials in small patient populations. My
long-term objectives are to determine mechanisms of CDGs and identify new therapeutics for CDG patients.
One example is DPAGT1-CDG - a CDG caused by mutations in the gene DPAGT1 which encodes for the first
enzyme used in N-linked glycosylation. Recently, I identified many modifier genes which can be perturbed to
rescue a model of DPAGT1-CDG, but their mechanisms are not yet known. In Aim 1, I propose to determine the
mechanisms of these modifier genes using human cell culture in order to characterize new therapeutic targets
for this disorder. I will use a DPAGT1-CDG cell model to determine how these rescuing modifier genes affect
patient-related health metrics of proliferation, stress, and their glycoproteome. In Aim 2, to identify new drugs
that can rescue this disorder, I will use an in vivo Drosophila DPAGT1-CDG model to perform a repurposed drug
screen using 1,500+ small molecules (98% FDA/EMA-approved). Using an in vivo model will ensure these drugs
are safe during development, and this repurposed drug screen will help expedite the clinical trial process for new
CDG therapies. In Aim 3, I will characterize a new finding that suggests that genes underlying CDGs ("CDG
genes") themselves represent an enriched set of modifier genes for treating CDGs. Perturbation of CDGs can
rescue models of DPAGT1-CDG, as well as a model of the most common CDG, PMM2-CDG. I will use RNA
interference to perturb all 150+ CDG genes to identify any that are capable of rescuing both DPAGT1- and
PMM2-CDG human cell models (with the same health metrics as in Aim 1). The discovery of new CDG gene
modifier genes capable of rescuing these models could have the potential to translate into future therapies for
many other CDGs. Finally, in Aim 4, I will synthesize the above Aims to test therapeutic drugs from Aim 2 in
human cell culture models and CDG modifier genes from Aim 3 in Drosophila models. I will use high-throughput
tools in cell culture and in vivo stress markers in Drosophila to determine the mechanisms of these new therapies.
This multi-species approach will ensure a better transition from preclinical models into therapies for patients. In
addition to the above, completion of this proposal will provide me with training to complete my career goals. I will
learn new techniques in cell culture and small molecule screens while also taking formal courses in mentorship
and writing. I have an outstanding mentor, co-mentor, and advisory committee consisting of faculty with expertise
in CDGs, cell culture, drug screening, genetics, and molecular biology. I also have state-of-the-art facilities and
staff at the University of Utah available to me. With my plan, committed faculty members, and excellent institution,
completing this proposal will help me successfully transition to an independent research career.
糖基化是一种重要的生物途径,涉及糖的翻译后或共翻译添加
蛋白质的部分。先天性糖基化障碍 (CDG) 是由以下原因引起的罕见发育障碍
糖基化途径代谢的先天性错误。 CDG 缺乏良好的治疗选择,这通常是
由于对机制知之甚少以及在小患者群体中开展临床试验存在困难。我的
长期目标是确定 CDG 的机制并为 CDG 患者找到新的治疗方法。
一个例子是 DPAGT1-CDG - 一种由编码第一个基因 DPAGT1 的突变引起的 CDG
用于 N-连接糖基化的酶。最近,我发现了许多可以扰乱的修饰基因
拯救了 DPAGT1-CDG 模型,但其机制尚不清楚。在目标 1 中,我建议确定
使用人类细胞培养物来表征这些修饰基因的机制,以表征新的治疗靶点
对于这种疾病。我将使用 DPAGT1-CDG 细胞模型来确定这些拯救修饰基因如何影响
与患者相关的增殖、应激及其糖蛋白组健康指标。目标 2:识别新药
为了挽救这种疾病,我将使用体内果蝇 DPAGT1-CDG 模型来进行药物的重新利用
使用 1,500 多种小分子进行筛选(98% 获得 FDA/EMA 批准)。使用体内模型将确保这些药物
在开发过程中是安全的,这种重新利用的药物筛选将有助于加快新药的临床试验过程
CDG疗法。在目标 3 中,我将描述一项新发现,该发现表明 CDG 背后的基因(“CDG
基因”)本身代表了一组丰富的用于治疗 CDG 的修饰基因。CDG 的扰动可以
DPAGT1-CDG 的救援模型,以及最常见的 CDG 的模型 PMM2-CDG。我将使用RNA
干扰扰乱所有 150 多个 CDG 基因,以确定任何能够拯救 DPAGT1- 和
PMM2-CDG 人类细胞模型(具有与目标 1 相同的健康指标)。新CDG基因的发现
能够拯救这些模型的修饰基因可能有潜力转化为未来的治疗方法
许多其他 CDG。最后,在目标 4 中,我将综合上述目标来测试目标 2 中的治疗药物
人类细胞培养模型和果蝇模型中 Aim 3 的 CDG 修饰基因。我将使用高吞吐量
细胞培养工具和果蝇体内应激标记物,以确定这些新疗法的机制。
这种多物种方法将确保更好地从临床前模型过渡到患者治疗。在
除此之外,完成本提案将为我提供完成职业目标的培训。我会
学习细胞培养和小分子筛选的新技术,同时参加正规的指导课程
和写作。我有一位杰出的导师、共同导师和由具有专业知识的教师组成的咨询委员会
CDG、细胞培养、药物筛选、遗传学和分子生物学。我还拥有最先进的设施
犹他大学的工作人员可以为我服务。凭借我的计划、忠诚的教职人员和优秀的机构,
完成这个提案将帮助我成功过渡到独立研究生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Martin Dalton其他文献
Hans Martin Dalton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Martin Dalton', 18)}}的其他基金
Characterization and Contextualization of Modifier Genes Affecting ER Stress
影响内质网应激的修饰基因的特征和背景
- 批准号:
10312806 - 财政年份:2020
- 资助金额:
$ 11.61万 - 项目类别:
Characterization and Contextualization of Modifier Genes Affecting ER Stress
影响内质网应激的修饰基因的特征和背景
- 批准号:
9910079 - 财政年份:2020
- 资助金额:
$ 11.61万 - 项目类别:
Characterization of Conserved Protein Synthesis Aging Pathways
保守蛋白质合成老化途径的表征
- 批准号:
9192920 - 财政年份:2016
- 资助金额:
$ 11.61万 - 项目类别:
相似国自然基金
MLCK1介导细胞凋亡和自噬影响炎症性肠病进展
- 批准号:82370568
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
EHMT1通过CBX4/MLKL轴调控心肌细胞坏死性凋亡影响心肌缺血再灌注损伤的机制研究
- 批准号:82370288
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
VNN1通过内质网非折叠蛋白应激介导单核巨噬细胞凋亡影响创伤患者脓毒症发生的机制研究
- 批准号:82372549
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
草鱼贮藏过程肌细胞凋亡对鱼肉品质的影响机制研究
- 批准号:32372397
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
应激颗粒自噬对低氧诱导猪卵泡颗粒细胞凋亡的影响及机制研究
- 批准号:32302741
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the role of DCAF7 on hematopoietic stem cell maintenance
阐明 DCAF7 对造血干细胞维持的作用
- 批准号:
10785443 - 财政年份:2023
- 资助金额:
$ 11.61万 - 项目类别:
Targeting proteoglycan-mediated signaling in Ewing sarcoma
尤文肉瘤中靶向蛋白多糖介导的信号传导
- 批准号:
10591979 - 财政年份:2023
- 资助金额:
$ 11.61万 - 项目类别:
Prohibiting Cell Death in Human Keratocytes: New Insights for Non-surgical Keratoconus Treatment
抑制人角膜细胞的细胞死亡:非手术圆锥角膜治疗的新见解
- 批准号:
10720431 - 财政年份:2023
- 资助金额:
$ 11.61万 - 项目类别:
Oxysterol-Binding protein like 7 in chronic kidney disease
慢性肾病中的氧甾醇结合蛋白如 7
- 批准号:
10603088 - 财政年份:2023
- 资助金额:
$ 11.61万 - 项目类别:
Regulation of endothelial cell phosphatidylserine in thrombosis
血栓形成中内皮细胞磷脂酰丝氨酸的调节
- 批准号:
10541214 - 财政年份:2022
- 资助金额:
$ 11.61万 - 项目类别: