Single-molecule protein sequencing by detection and identification of N-terminal amino acids
通过检测和鉴定 N 端氨基酸进行单分子蛋白质测序
基本信息
- 批准号:10646060
- 负责人:
- 金额:$ 39.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAffinityAmino Acid SequenceAmino AcidsAntibodiesAntibody AffinityAreaBasic ScienceBindingBiologicalBiological AssayBiological MarkersBiologyBiotechnologyBloodChargeChemicalsChemistryComplexComplex MixturesDNA sequencingDetectionDevelopmentDiagnostics ResearchDiseaseDyesEnzyme-Linked Immunosorbent AssayFaceFluorescence MicroscopyFluorescence Resonance Energy TransferFunctional disorderFutureGenomicsGrowth and Development functionHourImageImmune SeraImmunityImmunizeIndividualInfectionKnowledgeLabelLibrariesLigationLlamaMalignant NeoplasmsMarketingMass Spectrum AnalysisMeasuresMethodsMonoclonal AntibodiesMusN-terminalNoiseOryctolagus cuniculusParentsPatientsPeptide MappingPeptide Sequence DeterminationPeptidesPhaseProcessProtein AnalysisProteinsProteomeProteomicsReactionReagentResearchResolutionSamplingSensitivity and SpecificitySideSignal TransductionSolidSpecificitySurfaceSurface Plasmon ResonanceSystemTechnologyTertiary Protein StructureTestingTitrationsTumor AntigensVisualizationYeastsantibody engineeringclinical diagnosisclinical diagnosticscommercializationcost effectivecross reactivitydigitaldisease diagnosisimmunological diversityimprovedinnovationmanufacturemolecular massnanoporenext generationnext generation sequencingnovelnovel strategiespathogenpolyclonal antibodyprotein complexprotein expressionprotein functionprotein structuresequencing platformsingle moleculesuccesstumor
项目摘要
SUMMARY - Subtle changes in protein expression are critical for proper growth and development, but irregu-
larities can cause deleterious cellular effects or large-scale biological dysfunction. Sequencing samples with
complex mixtures of proteins could greatly accelerate research into protein function and biology, but there is
currently no efficient and cost-effective strategy for protein sequencing at single-amino-acid resolution.
Two methods are commercially available for protein sequencing. In the first, “Edman degradation”, bulk quanti-
ties of whole protein or purified fragments are sequenced by cleaving the first (N-terminal) amino acid and chem-
ically identifying it. In the second method, based on mass spectrometry, a single protein or mixture of proteins is
fragmented, and the molecular mass and charge of each fragment are analyzed. This information is compared
known protein sequences to infer the identity of the input proteins. Both of these methods require ~1 million
molecules of each protein, and Edman degradation cannot currently be used on heterogenous protein mixtures.
Existing approaches for single molecule protein sequencing are hindered by the number and diversity of amino
acids, as well as the interactions between amino acids that interfere with chemical identification of their side
chains. Harsh denaturation agents can mitigate some issues, but they can compromise the identification systems
themselves. In addition, denaturation agents only remove some of the intramolecular interactions of proteins.
Glyphic Biotechnologies is developing a novel strategy to sequence individual protein molecules in their entirety
from a heterogeneous sample. This process is based on ligating the N-terminal amino acid to a cleavable chem-
ical linker, which subsequently tethers it locally to the surface. Cleavage of the linker removes the N-terminal
amino acid from the protein for highly sensitive identification with no interference from protein structure or adja-
cent amino acids. The process is repeated for each subsequent amino acid, yielding the protein sequence. The
approach may simultaneously sequence millions to billions of individual protein molecules in hours, which will
revolutionize protein analysis by making large-scale protein sequencing feasible, inexpensive, and routine.
The current proposal focuses on developing reagents specifically to detect the N-terminal amino acid of proteins,
allowing amino acids to be digitally identified via this N-terminal isolation strategy. In Aim 1 we will generate
antibodies to recognize at least 10 different isolated amino acids – enough to identify ~90% of the proteome after
10 sequencing rounds. In Aim 2 we will further optimize the antibodies and demonstrate the feasibility of using
them to sequence individual proteins among a background of non-modified proteins.
Success of these Aims will enable the Glyphic protein sequencing platform to detect, quantify, and sequence
single proteins in complex protein mixtures in an unbiased fashion - without any prior knowledge of their identity
or even their existence. When commercialized, it will enable clinical diagnosis of disease based on the proteins
present in a patient sample and allow identification of unique proteins to for as-yet unknown biomarkers.
摘要 - 蛋白质表达的细微变化对于适当的生长和发育至关重要,但是
纤维可能会导致删除的细胞效应或大规模生物功能障碍。与样品进行测序
蛋白质的复杂混合可能会大大加速蛋白质功能和生物学的研究,但是有
目前,在单氨基酸分辨率下尚无蛋白质测序的有效且具有成本效益的策略。
两种方法可用于蛋白质测序。首先,“埃德曼退化”,大量量化
通过裂解第一(N末端)氨基酸和化学来对全蛋白或纯化片段的关系进行测序
ifully识别它。在第二种方法中,基于质谱法,蛋白质的单蛋白或混合物是
分散,分析每个片段的分子质量和电荷。比较此信息
已知的蛋白质序列来推断输入蛋白的身份。这两种方法都需要约100万
每种蛋白质的分子和Edman降解目前不能用于异质蛋白混合物。
单分子蛋白测序的现有方法受到氨基的数量和多样性的阻碍
酸以及干扰其侧化学鉴定的氨基酸之间的相互作用
链。苛刻的变性代理可以减轻某些问题,但它们可以损害身份系统
自己。另外,变性剂仅去除蛋白质的某些分子内相互作用。
甘氨酸生物技术正在制定一种新的策略,以整体对单个蛋白质分子进行测序
来自异质样品。该过程基于将N末端氨基酸连接到可裂解的化学
iCal接头,随后将其局部置于表面。链接器的切割消除了N末端
来自蛋白质的氨基酸,用于高度敏感的鉴定,而不会受到蛋白质结构或相邻的干扰
百分钟氨基酸。为每个随后的氨基酸重复该过程,从而产生蛋白质序列。
方法可以简单地将数百万到数十亿个单独的蛋白质分子在小时内序列,这将
通过使大规模的蛋白质测序可行,廉价和常规来彻底改变蛋白质分析。
当前的建议着重于开发专门检测蛋白质N末端氨基酸的试剂,即
通过这种N末端分离策略,可以通过数字识别氨基酸。在AIM 1中,我们将产生
识别至少10种不同分离的氨基酸的抗体 - 足以鉴定约90%的蛋白质组
10个测序回合。在AIM 2中,我们将进一步优化抗体,并证明使用的可行性
它们以在非修饰蛋白的背景之间对单个蛋白质进行测序。
这些目标的成功将使甘氨酸蛋白测序平台能够检测,量化和序列
复杂蛋白质中的单蛋白以公正的方式混合 - 没有任何先验知识
甚至它们的存在。商业化时,它将基于蛋白质对疾病进行临床诊断
存在于患者样品中,并允许鉴定独特的蛋白质,以使其尚未知道的生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Masao Estandian其他文献
Daniel Masao Estandian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Masao Estandian', 18)}}的其他基金
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 39.06万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 39.06万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 39.06万 - 项目类别:
Proline residues are a key determinant for toxin entry into the host cytosol
脯氨酸残基是毒素进入宿主细胞质的关键决定因素
- 批准号:
10740431 - 财政年份:2023
- 资助金额:
$ 39.06万 - 项目类别:
Rescue of Autoimmune-Associated Long QT Syndrome by Decoy Peptides
诱饵肽拯救自身免疫相关的长 QT 综合征
- 批准号:
10687180 - 财政年份:2022
- 资助金额:
$ 39.06万 - 项目类别:
Enhancing olfactory receptor expression for biochemical studies of odorant-receptor interactions
增强嗅觉受体表达以进行气味受体相互作用的生化研究
- 批准号:
10580041 - 财政年份:2022
- 资助金额:
$ 39.06万 - 项目类别: