Role of DNA double-strand breaks in neural function and homeostasis
DNA 双链断裂在神经功能和稳态中的作用
基本信息
- 批准号:10414105
- 负责人:
- 金额:$ 33.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAgeAge-associated memory impairmentAgingAnimalsBiological AssayBiologyBrainBrain DiseasesCellsCerebral cortexChromatin StructureDNADNA Double Strand BreakDNA RepairDNA Sequence AlterationDementiaDetectionDevelopmentDiseaseDouble Strand Break RepairERG geneEconomic BurdenElectrophysiology (science)Epigenetic ProcessFutureGene ExpressionGenesGenomeGenome StabilityGenomicsGoalsHeadHippocampus (Brain)HistologicHomeostasisHumanImpaired cognitionIn VitroKnowledgeLongevityMaintenanceMediatingMissionModelingMosaicismMusNatural regenerationNerve DegenerationNeurobiologyNeurodegenerative DisordersNeuronal PlasticityNeuronsNeurophysiology - biologic functionNonhomologous DNA End JoiningOpticsOrganizational ChangePathway interactionsPhenotypePhysiologicalPhysiologyPositioning AttributePreventionProcessPublic HealthResearchResearch ProposalsRoleSleepStructureTechniquesTechnologyTestingTimeUnited States National Institutes of Healthaging brainawakebrain healthcell typecognitive functionepigenomeepigenomicsgenetic approachgenetic manipulationimprovedinnovationinsightinterdisciplinary approachmultidisciplinaryneural circuitneurobehavioral testneurophysiologypreventrelating to nervous systemrepairedtargeted sequencingtheoriestherapeutic developmenttherapeutically effectivetooltranscriptome
项目摘要
PROJECT SUMMARY/ABSTRACT
Aging-associated brain disorders, including cognitive decline, are among the greatest public health challenges.
DNA repair is emerging as a potential regulator of age-related cognitive decline and neurodegeneration, and
may be a powerful potential target for effective therapeutic strategies in the future. The brain may be vulnerable
to genomic alterations due to its network structure, the complexity of its transcriptome, and the low or absent
turnover and long lifespan of neural cell types. This suggests genome maintenance pathways are crucial for
brain health: persistent or incorrectly repaired DNA double-strand breaks (DSBs) could contribute to genomic
alterations, thus promoting age-related cognitive impairment and neurodegenerative disorders. However, the
role of post-developmental, neuronal DSB repair in brain physiology with age has not been addressed. The
broad implication for this fundamental gap in knowledge is that crucial opportunities for development of
therapeutics for treatment and prevention of brain disorders may be missed. This provides a strong rationale for
elucidating the biology of neuronal DSB repair at multiple levels. Thus, our long-term goal is to determine the
extent to which neuronal DNA double-strand break formation and repair impact brain function and brain
disorders. We will elucidate the relationship between neural circuit function and the classical non-homologous
end-joining (C-NHEJ) DNA repair machinery in neurons with age. Moreover, we will elucidate the extent to which
post-developmental, neuronal DSB repair suppresses brain aging phenotypes related to chromatin structure,
genome organization, and gene expression.
The central hypothesis of the proposed project is that DNA double-strand break formation and repair in mature
neurons impacts neural physiology. To test this hypothesis and to advance toward our long-term goal, we
propose the following specific aims: (1) Define consequences of aging and C-NHEJ inactivation in neurons at
the cellular and genomic level; (2) Elucidate impact of aging and C-NHEJ inactivation on the neuronal epigenomic
landscape; and, (3) Determine impact of aging and C-NHEJ repair on circuit-level neuronal physiology. The
proposed approach involves a comprehensive, multidisciplinary analysis of neuronal function at the genomic,
epigenomic, organismal, and neural circuit level. The proposed project is significant because it uses innovative
approaches to investigate emerging concepts with major implications for human brain health, age-related
cognitive decline, and neurodegenerative diseases. Further, the project will lead to the development of new
research tools and models. Insights gained from the proposed studies are also expected to inform research and
knowledge in other fields related to genomic stability and aging.
项目概要/摘要
与衰老相关的脑部疾病,包括认知能力下降,是最大的公共卫生挑战之一。
DNA 修复正在成为与年龄相关的认知衰退和神经退行性疾病的潜在调节剂,并且
可能是未来有效治疗策略的强大潜在目标。大脑可能很脆弱
由于其网络结构、转录组的复杂性以及低或缺失而导致的基因组改变
神经细胞类型的更新和长寿命。这表明基因组维护途径对于
大脑健康:持续或不正确修复的 DNA 双链断裂 (DSB) 可能会导致基因组损伤
改变,从而促进与年龄相关的认知障碍和神经退行性疾病。然而,
随着年龄的增长,发育后神经元 DSB 修复在大脑生理学中的作用尚未得到解决。这
这种知识上的根本差距的广泛含义是,发展的重要机会
可能会错过治疗和预防脑部疾病的疗法。这提供了强有力的理由
从多个层面阐明神经元 DSB 修复的生物学。因此,我们的长期目标是确定
神经元 DNA 双链断裂形成和修复对大脑功能和大脑的影响程度
失调。我们将阐明神经回路功能与经典非同源神经网络之间的关系
随着年龄的增长,神经元中的末端连接(C-NHEJ)DNA修复机制。此外,我们将阐明在多大程度上
发育后神经元 DSB 修复抑制与染色质结构相关的大脑衰老表型,
基因组组织和基因表达。
该项目的中心假设是DNA双链断裂在成熟细胞中形成和修复。
神经元影响神经生理学。为了检验这一假设并朝着我们的长期目标前进,我们
提出以下具体目标:(1)定义衰老和 C-NHEJ 神经元失活的后果
细胞和基因组水平; (2) 阐明衰老和C-NHEJ失活对神经元表观基因组的影响
景观; (3) 确定衰老和 C-NHEJ 修复对回路水平神经元生理学的影响。这
所提出的方法涉及对基因组神经元功能进行全面的多学科分析,
表观基因组、有机体和神经回路水平。拟议的项目意义重大,因为它采用了创新
研究对人类大脑健康、年龄相关的重大影响的新兴概念的方法
认知能力下降和神经退行性疾病。此外,该项目将导致新的开发
研究工具和模型。从拟议研究中获得的见解也有望为研究和
与基因组稳定性和衰老相关的其他领域的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kira Poskanzer其他文献
Kira Poskanzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kira Poskanzer', 18)}}的其他基金
Role of DNA double-strand breaks in neural function and homeostasis
DNA 双链断裂在神经功能和稳态中的作用
- 批准号:
10241955 - 财政年份:2020
- 资助金额:
$ 33.11万 - 项目类别:
Dissecting Monoaminergic Physiology of Prefrontal Cortical Astrocytes
剖析前额皮质星形胶质细胞的单胺能生理学
- 批准号:
9912149 - 财政年份:2019
- 资助金额:
$ 33.11万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 33.11万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 33.11万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 33.11万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 33.11万 - 项目类别: