An Automated Microfluidics Technology for Minimally Disruptive Analysis of Cells and Fluids within Living 3D Cultures
用于对活体 3D 培养物中的细胞和液体进行最小破坏性分析的自动化微流体技术
基本信息
- 批准号:10414469
- 负责人:
- 金额:$ 41.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAcademic Research Enhancement AwardsAddressAdoptionAgonistArchitectureBiologicalBiological AssayBiologyBiopsyBlood VesselsCell Culture TechniquesCell DeathCellsChemicalsCollagenCollecting CellComplexComputersControlled EnvironmentCosmeticsCustomDataDepositionDevelopmentDiffusionDrug Delivery SystemsDyesEnsureExcisionExposure toExtracellular MatrixFeasibility StudiesFutureGoalsHandHistologyIn SituIndividualIndustryInjectionsLeftLiquid substanceLiteratureLocationMicrofluidicsMicroscopicMicroscopyMonitorNutrientOrgan SizeOutcomePatternPharmaceutical PreparationsPhysiologicalPlumbingPoisonProductionReaderRecipeRegenerative MedicineResearchSamplingSeedsSpecific qualifier valueSpeedStreamSystemTechniquesTechnologyThickTimeTissue EngineeringTissuesToxicologyTranslatingWorkbioinkbonecell behaviorcell typecombinatorialcostcrosslinkdesigndrug testingexperienceexperimental studyindustry involvementinventionmicrofluidic technologymicroorganismmicroorganism culturemultidisciplinarynew technologynoveloperationoptical imagingosteochondral tissuepractical applicationpreventprototyperesponsescaffoldscale upspatiotemporalsuccessthree dimensional cell cultureundergraduate studentwasting
项目摘要
SUMMARY
Cell experiments are ubiquitous to the studies of biology, tissue engineering and drug testing. However, 3D
cultures are notoriously difficult to analyze nondestructively. Instead, they are typically evaluated using sacrificial
means: such as histology sectioning, or by crushing the sample for chemical plate-reader assays. This is
inefficient, costly and results in data discontinuity because each new experiment only provides a single time point
(which is further averaged over the whole construct, if crushed). Likewise, delivering new cells or chemicals (e.g.,
nutrients, drugs, dyes, etc.) to custom locations without disturbing an on-going experiment is also difficult: only
invasive injections would ensure that the deep portions of a 3D culture are reached. This limits the type of
experiments that are feasible; and, the inability to deliver nutrients results in cell death in the deep portions of
the thick cultures (i.e., it is currently not possible to grow them to physiologically relevant sizes). Therefore, there
is a need to be able to perform fluid and cell manipulations (i.e., delivering, probing, removing, and sampling)
within the living 3D cultures, continuously and with minimal effects to the studied biology. To that end, the broad
goal of the proposed project is to resolve all these bottlenecks simultaneously, and additionally create a breadth
of new experimental possibilities, by interlacing the 3D cultures with automated microscopic channels and ports.
The feasibility of the idea has been demonstrated via a proof-of-concept prototype capable of XY fluid and
cell manipulations within a living 2D culture. Therefore, the proposed R15 program takes the next logical steps
by scaling up this invention to 3D scaffolds (Aim 1) and demonstrating its first practical application - a continuous
nondestructive spatiotemporal culture analysis (Aim 2). Specifically, Aim 1 designs a novel plumbing architecture
capable of performing thousands of XYZ fluid/cell manipulations using minimal external hardware (Task 1). It
also devises a fabrication recipe for a hands-free manufacturing of the microfluidic scaffolds using commercially
available 3D printers (Task 2). Simultaneously, Aim 2 uses the existing 2D prototype (until the 3D scaffold from
Aim 1 is ready) to determine how to use conventional end-point (i.e., toxic) chemical assays ex-situ in order to
obtain a continuous stream of information about the cell behavior occurring at different points in a living culture.
A successful outcome of this aim will enable circumventing the reliance on sacrificial analysis (e.g., histology),
which will speed up experiments, save costs and yield troves of continuous spatiotemporal biological data.
Ultimately, this technology will facilitate the future development of closed-loop controls of basic cell behavior in
organ-sized 3D scaffolds, which will generally benefit multiple fields of research and industries that involve
microorganism cultures: such as biology, regenerative medicine, production of biological molecules, drug testing,
toxicology, cosmetics, etc. Chem/Bio/Electr/Comp Eng undergrads (~10 total) will be exposed to multidisciplinary
3D printing, microfluidics, microscopy, and cell culturing research over the course of the 3 yr project.
概括
细胞实验无处不在生物学,组织工程和药物测试。但是,3D
众所周知,培养很难进行非破坏性分析。相反,通常使用牺牲来评估它们
方法:例如组织学切片,或通过粉碎化学板读取器测定的样品。这是
效率低下,昂贵且导致数据不连续性,因为每个新实验只提供一个时间点
(如果被压碎,则在整个构造中进一步平均)。同样,传递新的细胞或化学物质(例如,
营养素,药物,染料等)到定制位置而不打扰正在进行的实验也很困难:只有
侵入性注射将确保达到3D文化的深处。这限制了
可行的实验;而且,无法提供营养导致在深处的细胞死亡
较厚的培养物(即目前不可能将它们种植到生理相关的大小)。因此,那里
需要能够执行流体和细胞操作(即交付,探测,去除和采样)
在活着的3D培养物中,对所研究的生物学产生了最小的影响。为此,宽阔
拟议项目的目标是同时解决所有这些瓶颈,并创建一个广度
通过将3D培养物与自动微观通道和端口相交的新实验可能性。
该想法的可行性已通过能够XY流体和
活着的2D文化中的细胞操作。因此,提出的R15程序采取了下一个逻辑步骤
通过将本发明扩展到3D脚手架(AIM 1)并展示其第一个实际应用 - 连续的
无损时空培养分析(AIM 2)。具体而言,AIM 1设计一种新颖的管道建筑
能够使用最小的外部硬件(任务1)执行数千种XYZ流体/细胞操作。它
还设计了一种制造食谱,用于使用商业上的微流体脚手架进行免费制造
可用的3D打印机(任务2)。同时,AIM 2使用现有的2D原型(直到3D脚手架
AIM 1已准备就绪)确定如何使用常规的终点(即有毒)化学测定剂以外的位置
获取有关生物文化中不同点的细胞行为的连续信息。
这个目标的成功结果将使能够避免对牺牲分析的依赖(例如,组织学),
这将加快实验,节省连续时空生物学数据的成本和收益。
最终,这项技术将有助于未来开发基本细胞行为的闭环控制
器官尺寸的3D脚手架,通常将受益于涉及的多个研究和行业领域
微生物培养:例如生物学,再生医学,生物分子的产生,药物测试,
毒理学,化妆品等。CHEM/BIO/ELET/COMP ENG大学(总共约10个)将暴露于多学科
在3年项目过程中,3D打印,微流体,显微镜和细胞培养研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROMAN S VORONOV其他文献
ROMAN S VORONOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
直书写3D打印应变传感器性能退化机制与耐久性设计方法
- 批准号:12372078
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
3D打印工厂社群建模及其客户化大批量群智生产机理与方法
- 批准号:52375512
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全固态钠离子电池的3D打印制备及性能研究
- 批准号:52372090
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Genetics and neurobiology of aggression of Betta splendens
芨芨草攻击行为的遗传学和神经生物学
- 批准号:
10731186 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别: