Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
基本信息
- 批准号:10634673
- 负责人:
- 金额:$ 34.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-05 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAttentionBallisticsBig DataBiologicalBrainCreativenessData SetDevelopmentEnsureEventFeedbackFiberFloorFreedomGeometryGoalsHumanImageImaging technologyKnowledgeLengthLightLightingMeasurementMethodsMicroscopicMicroscopyModalityMotivationMusNoiseOptical Coherence TomographyOpticsPerformancePhasePhotonsPublishingResearchResolutionSamplingSchemeShapesSignal TransductionSkinSkin TissueSpeedSpottingsSystemTechniquesThickTimeTissuesadaptive opticsbrain tissueclinical applicationdata acquisitiondeep field surveyexperimental studyfundamental researchimaging capabilitiesimaging sciencein vivometermultiphoton microscopynovel strategiesoptical imagingparallel processingprocessing speedprogramssuccesstitanium dioxide
项目摘要
Extending imaging depth is one of the grand challenges in optical microscopy, and many creative approaches
are under development to mitigate the detrimental impact of the phenomenon of ‘optical scattering’ and enable
deeper optical imaging in scattering media. Light propagating in dense tissue undergoes scattering events that
scramble the phase of the propagating optical wavefront, and thus disrupts the constructive interference needed
to focus/spatially localize the light to a diffraction-limited focal spot. Consequently, microscopic resolution is
typically only available in the so-called ‘single-scattering’ (SS) or ‘ballistic’ light regime. OCT is one of the leading
modalities in the field of deep microscopy, with maximum imaging depths typically 1–2 mm in scattering tissues.
However, the incredible success of OCT has in some ways led to lower motivation than in other optical imaging
fields to develop new approaches to address the problem of multiple scattering (MS). This is also a great
opportunity – by building upon its already deep imaging capabilities, OCT has the opportunity to once again be
at the forefront of research on pushing the imaging depth limits of optical microscopy. We propose an integrated
approach that combines (1) long-wavelength OCT (1700 nm window, lower scattering coefficient supporting
deeper imaging), (2) spectral-domain OCT (SD-OCT) in the conjugate imaging configuration to enhance the
deep OCT signal by 2-3 orders of magnitude relative to the standard imaging configuration, (3) hardware
adaptive optics (HAO) to correct tissue-induced aberrations and thereby boost the ballistic signal deep within
tissue, and (4) aberration-diverse OCT (AD-OCT) for suppressing MS. Our recently-developed AD-OCT
approach combines the advantages of a fiber-based OCT system with the principle behind the highly promising
coherent accumulation of single scattering (CASS) method. The CASS method coherently accumulates SS from
multiple illumination angles (plane wave illumination in full-field imaging geometry), whereas AD-OCT coherently
accumulates SS arising from illuminating the sample with different known aberration states, and leveraging
computational adaptive optics (CAO) to circumvent the resolution penalty normally associated with these
aberrations. Aim 1 will develop a method to overcome the aberration-diversity saturation limit, implement high-
speed GPU-based processing to address the Big Data problem in AD-OCT, and enable real-time feedback at
the time of imaging. Aim 2 will quantitatively compare the performance of Gaussian-beam OCT (with and without
HAO correction of tissue aberrations) vs. AD-OCT (with HAO correction of tissue aberrations). This will include
measurements of the depth-dependent 3D point-spread-function, which will also fill an important knowledge gap
in fundamental research on MS in OCT. Aim 3 will demonstrate AD-OCT beyond the current OCT multiple
scattering limit in human skin and mouse brain in vivo (we will ‘unlock’ the 2-5 mm depth range). If successful,
this proposal will demonstrate the deepest OCT imaging ever performed in human skin and mouse brain, and
so is significant from the perspective of fundamental imaging science and the biomedical applications of OCT.
扩展成像深度是光学显微镜和许多创造性方法的巨大挑战之一
正在开发中,以减轻“光学散射”现象的有害影响,并使
在致密组织中传播的光会经历散射事件,从而进行更深入的光学成像。
扰乱传播光波前的相位,从而破坏所需的相长干涉
为了将光聚焦/空间定位到测试的衍射极限焦点,微观分辨率是。
通常仅适用于所谓的“单散射”(SS)或“弹道”光学相干断层扫描(OCT),是领先的光学相干断层扫描技术之一。
深度显微镜领域的模式,在散射组织中最大成像深度通常为 1-2 毫米。
然而,OCT 令人难以置信的成功在某些方面导致其动力低于其他光学成像
领域开发新方法来解决多重散射(MS)问题这也是一个伟大的事情。
机会——通过以其已经深厚的成像能力为基础,OCT 有机会再次成为
我们处于突破光学显微镜成像深度限制的研究前沿。
方法结合了 (1) 长波长 OCT(1700 nm 窗口,较低的散射系数支持
(2)谱域OCT(SD-OCT)在共轭成像配置中增强
深度 OCT 信号相对于标准成像配置提高 2-3 个数量级,(3) 硬件
自适应光学 (HAO) 可纠正组织引起的像差,从而增强内部深处的弹道信号
(4) 用于抑制 MS 的像差多样化 OCT (AD-OCT)。
该方法结合了基于光纤的 OCT 系统的优点和极具前景的原理
单次散射相干累积 (CASS) 方法 CASS 方法相干累积 SS。
多个照明角度(全场成像几何中的平面波照明),而 AD-OCT 相干
累积由于用不同的已知像差状态照射样品而产生的 SS,并利用
计算自适应光学 (CAO),以避免通常与这些相关的分辨率损失
目标1将开发一种方法来克服像差分集饱和极限,实现高像差。
加速基于 GPU 的处理,解决 AD-OCT 中的大数据问题,并实现实时反馈
目标 2 将定量比较高斯光束 OCT 的性能(有和没有)。
组织像差的 HAO 校正)与 AD-OCT(组织像差的 HAO 校正)。
深度相关 3D 点扩散函数的测量,这也将填补重要的知识空白
OCT 中 MS 的基础研究目标 3 将证明 AD-OCT 超越当前的 OCT 倍数。
人体皮肤和小鼠大脑体内的散射极限(如果成功,我们将“解锁”2-5毫米深度范围)。
该提案将展示有史以来在人类皮肤和小鼠大脑中进行的最深的 OCT 成像,以及
从基础成像科学和 OCT 生物医学应用的角度来看,这具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Graham Adie其他文献
Steven Graham Adie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Graham Adie', 18)}}的其他基金
Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
- 批准号:
10446063 - 财政年份:2022
- 资助金额:
$ 34.64万 - 项目类别:
Real-time Aberration Sensor for Large-Scale Microscopy Deep in the Mouse and Adult Zebrafish Brain
用于小鼠和成年斑马鱼大脑深处的大规模显微镜检查的实时像差传感器
- 批准号:
10166305 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Ultrahigh-Resolution Quantitative Optical Coherence Elastography of the Tumor Microenvironment In Vivo
体内肿瘤微环境的超高分辨率定量光学相干弹性成像
- 批准号:
10225877 - 财政年份:2021
- 资助金额:
$ 34.64万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10165754 - 财政年份:2019
- 资助金额:
$ 34.64万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10399569 - 财政年份:2019
- 资助金额:
$ 34.64万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10389834 - 财政年份:2019
- 资助金额:
$ 34.64万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别: