Engineering a Novel Bio-Scaffold for Hepatic Tissue Restoration and Drug Screening
设计用于肝组织恢复和药物筛选的新型生物支架
基本信息
- 批准号:10631238
- 负责人:
- 金额:$ 14.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAdoptive TransferAnimal ExperimentsAnimal ModelAutologousBiochemicalBiocompatible MaterialsBiological ModelsBiomechanicsBiomedical EngineeringCellsCessation of lifeDevelopmentDialysis procedureDiseaseDrug CompoundingDrug ScreeningDrug TargetingEngineeringEvaluationFutureGraft RejectionHealthHepaticHepatic TissueHepatocyteHepatotoxicityHumanImmune responseImplantIn VitroIndividualInvestigationLaboratoriesLegal patentLiverLiver FailureLiver diseasesMeasuresMetabolicMethodsModelingMonitorMusOrganoidsPathologyPersonsPhysiologicalPrintingPropertyPublishingReportingStructureSystemTherapeuticTissue DonorsTissuesToxic effectTransplantationUnited StatesWorkaging populationbioprintingbioscaffoldcopolymerdesigndiagnostic screeningdrug discoveryeffective therapyhigh throughput screeningimplantationin vitro Modelin vivoin vivo Modelin vivo engraftmentin-vitro diagnosticsindexinginnovationliver functionliver injuryliver transplantationmimeticsmouse modelnovelrapid techniqueresponserestorationscaffoldscreeningsuccessthree dimensional cell culturetissue support frametoolviscoelasticity
项目摘要
Health issues associated with liver diseases afflict millions of individuals and account for over 70,000 deaths
annually in the United States. Due in part to an aging population, liver diseases are expected to rise
significantly over the next two decades, increasing the need for more effective treatment therapies and
increased success rates with transplants. Unfortunately, there are no effective treatments to curb the pathology
and there remains a shortage of available livers for transplantation. This challenge is further compounded with
alloreactive responses leading to transplant rejection. However, a viable solution is the use of a model liver
systems that accurately mimic the biomechanical and biochemical functioning of in vivo liver tissue.
Additionally, alternative methods to expand recipient autologous hepatic cells while maintaining function would
serve as efficient methods to generate liver systems for transplantation. However, while liver models for in vivo
use have been attempted, none have yet successfully expanded autologous hepatic cells in vitro followed by
successful implantation to alleviate liver failure in recipients using an in vivo model system. My laboratory has
recently demonstrated success in this approach, where we have established an effective in vitro 3D hepatocyte
culture system for rapid expansion. Furthermore our preliminary work shows great promise in applying the
system for in vivo adoptive implantation using our innovative in-house designed 3D scaffold system. Therefore,
this proposal's objective is to develop a method for rapid expansion of hepatic cells in a novel 3D printed
bioscaffold for assembly of a liver organoid for in vivo tissue restoration and ex vivo drug screening. The
central hypothesis is that primary hepatic cells seeded in a novel biomaterial scaffold will display similar
metabolic function, structure, and biomechanical properties to that of the original liver tissues. The success of
this approach will restore liver function following transplantation in a liver-damaged mouse model. The
innovative combination of rheological biomaterial tuning, 3D bioprinting, and culture methods that utilize a
novel bioscaffold will be applied in pursuit of two specific aims: 1) Engineering an ex vivo model for screening
therapeutic drugs targeting hepatocytes through 3D printed bioscaffolds and 2) Development of an implantable
hepatic organoid for in vivo tissue restoration to alleviate liver failure in a mouse model. These investigations
will establish a platform for novel 3D culture systems for both rigorous in vitro diagnostic screening and for in
vivo adoptive transfer approaches to physiologically restore failed liver function. The proposed work is
significant as the anticipated results will establish a platform for future investigations utilizing the biomaterial for
engineering cell seeded scaffolds to restore tissue function and in pursuit of drug discovery.
与肝病相关的健康问题困扰着数百万人,并导致超过 70,000 人死亡
每年在美国。部分由于人口老龄化,肝脏疾病预计会增加
未来二十年显着增加对更有效治疗方法的需求
提高移植的成功率。不幸的是,没有有效的治疗方法来抑制病理学
用于移植的肝脏仍然短缺。这一挑战进一步加剧
同种异体反应导致移植排斥。然而,一个可行的解决方案是使用模型肝脏
准确模拟体内肝组织的生物力学和生化功能的系统。
此外,在维持功能的同时扩增受体自体肝细胞的替代方法将
作为生成用于移植的肝脏系统的有效方法。然而,虽然体内肝脏模型
已经尝试过使用,但尚未成功地在体外扩增自体肝细胞
使用体内模型系统成功植入以减轻受体的肝衰竭。我的实验室有
最近证明了这种方法的成功,我们建立了有效的体外 3D 肝细胞
文化体系快速扩张。此外,我们的前期工作显示出应用该方法的巨大前景
使用我们创新的内部设计的 3D 支架系统进行体内过继植入的系统。所以,
该提案的目标是开发一种在新型 3D 打印肝细胞中快速扩增的方法
用于组装肝脏类器官的生物支架,用于体内组织修复和离体药物筛选。这
中心假设是,接种在新型生物材料支架中的原代肝细胞将表现出类似的特征
代谢功能、结构和生物力学特性与原始肝组织的代谢功能、结构和生物力学特性相同。的成功
这种方法将在肝损伤小鼠模型移植后恢复肝功能。这
流变生物材料调节、3D 生物打印和培养方法的创新组合,利用
新型生物支架将用于实现两个具体目标:1)设计用于筛选的离体模型
通过 3D 打印生物支架靶向肝细胞的治疗药物以及 2) 开发可植入的
用于体内组织修复以减轻小鼠模型肝衰竭的肝类器官。这些调查
将建立一个新型 3D 培养系统平台,用于严格的体外诊断筛选和体内
体内过继转移方法可在生理上恢复衰竭的肝功能。拟议的工作是
意义重大,因为预期结果将为利用生物材料的未来研究建立一个平台
工程化细胞接种支架以恢复组织功能并追求药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamel Ali其他文献
Jamel Ali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jamel Ali', 18)}}的其他基金
Engineering a Novel Bio-Scaffold for Hepatic Tissue Restoration and Drug Screening
设计用于肝组织恢复和药物筛选的新型生物支架
- 批准号:
10412230 - 财政年份:2022
- 资助金额:
$ 14.8万 - 项目类别:
Racial contributions of microenvironment remolding during pancreatic metaplasia
胰化生过程中微环境重塑的种族贡献
- 批准号:
10762214 - 财政年份:2018
- 资助金额:
$ 14.8万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Genetics and neurobiology of aggression of Betta splendens
芨芨草攻击行为的遗传学和神经生物学
- 批准号:
10731186 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 14.8万 - 项目类别: