Data-driven approaches to identify biomarkers from multimodal imaging big data

从多模态成像大数据中识别生物标志物的数据驱动方法

基本信息

  • 批准号:
    10473657
  • 负责人:
  • 金额:
    $ 38.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-20 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

1. PROJECT SUMMARY/ABSTRACT The study of translational biomarkers in brain disorders is a very challenging and fruitful approach, which will empower a better understanding of healthy and diseased brains. This project will promote the translation of advanced engineering solutions and mathematic tools to novel neuroimaging applications in psychiatric disorders including major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), allowing sophisticated and powerful analyses on highly complex datasets. To date, the unifying syndrome classification (ICD-9/10;DSM-IV/5) for these mental disorders obscures our knowledge of underlying pathophysiology and cannot guide optimal treatments. For example, there is no biomarker that is able to precisely predict response of MDD to some treatments. One reason for this is that most neuroimaging prediction studies to date have used a single imaging measure or reported simple correlation relationships, without considering multimodal cross- information, nonlinear relationships, or multi-site cross-validation. Hence, developing novel data mining techniques such as deep learning, fusion with reference, and sparse regression can complement and exploit the richness of neuroimaging data, providing promising avenues to identify objective biomarkers and going beyond a descriptive use of brain imaging as traditionally used in studies of brain disease to individualized prediction. We will facilitate the translational biomarker identification by developing 3 novel data-driven methods: 1) A supervised fusion model that can provide insight on how cognitive impairment may affect covarying brain function and structure in mental disorder, by using different clinical measures as a reference to guide multimodal MRI fusion; 2) A cutting-edge prediction framework with aggregated feature selection techniques that is able to estimate clinical outcome more precisely, e.g., remission/relapse status of individual MDD patient after electroconvulsive treatment(ECT) using baseline brain imaging and demographic measures of 3) We will draw on advances and ideas from deep learning combined with layer-wise relevance propagation (LRP) or attention modules, to classify multiple groups of psychiatric disorders by incorporating dynamic functional measures. The proposed (Deep/Recurrent/Convolutional Neural Network, DNN/RNN/CNN) models will have enhanced interpretability that is able to trace back and discover the most predictive functional networks from input. All above proposed methods will be applied to big data containing both multimodal imaging and behavioral information (n~5000) pooled from existing studies, and our developed open-source toolboxes will be shared publicly. This pioneering study may provide an urgently-needed paradigm shift in the treatment and diagnosis of psychiatric disorders, thereby guiding personalized clinical care. Accomplishment of this project has great potential to discover neuroimaging biomarkers that have been missed by existing approaches, leading to earlier and more effective interventions, and laying the groundwork for a significant translational impact.
1. 项目概要/摘要 脑部疾病转化生物标志物的研究是一种非常具有挑战性且富有成效的方法, 将有助于更好地了解健康和患病的大脑。该项目将促进翻译 先进的工程解决方案和数学工具,用于精神病学中新颖的神经影像应用 包括重度抑郁症 (MDD)、双相情感障碍 (BD) 和精神分裂症 (SZ) 在内的疾病,允许 对高度复杂的数据集进行复杂而强大的分析。迄今为止,统一的综合征分类 (ICD-9/10;DSM-IV/5)这些精神障碍掩盖了我们对潜在病理生理学和 无法指导最佳治疗。例如,没有生物标志物能够精确预测反应 MDD 对某些治疗的影响。原因之一是迄今为止大多数神经影像预测研究都使用 单一成像测量或报告的简单相关关系,而不考虑多模态交叉 信息、非线性关系或多站点交叉验证。因此,开发新颖的数据挖掘 深度学习、参考融合和稀疏回归等技术可以补充和利用 丰富的神经影像数据,为识别客观生物标志物提供了有前途的途径,并超越 传统上用于脑部疾病研究的脑成像的描述性用途,以进行个体化预测。 我们将通过开发 3 种新颖的数据驱动方法来促进转化生物标志物的识别:1) A 监督融合模型可以深入了解认知障碍如何影响共变的大脑功能 精神障碍的结构和结构,通过使用不同的临床测量作为参考来指导多模态MRI 融合; 2)具有聚合特征选择技术的尖端预测框架,能够 更准确地估计临床结果,例如个体 MDD 患者治疗后的缓解/复发状态 使用基线脑成像和人口统计测量的电惊厥治疗 (ECT) 3) 我们将绘制 深度学习与分层相关性传播(LRP)或注意力相结合的进展和想法 模块,通过结合动态功能测量对多组精神疾病进行分类。这 提出的(深度/循环/卷积神经网络,DNN/RNN/CNN)模型将具有增强 可解释性能够从输入中追溯并发现最具预测性的功能网络。全部 上述方法将应用于包含多模态成像和行为的大数据 从现有研究中汇集的信息(n~5000),我们开发的开源工具箱将被共享 公开。这项开创性的研究可能为以下疾病的治疗和诊断提供迫切需要的范式转变: 精神疾病,从而指导个性化临床护理。该项目的完成具有重大意义 发现现有方法遗漏的神经影像生物标志物的潜力,从而导致更早的发现 以及更有效的干预措施,并为产生重大转化影响奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Sui其他文献

Jing Sui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Sui', 18)}}的其他基金

Discriminating schizophrenia from bipolar disorder by N-way multimodal fusion of
通过 N 路多模态融合区分精神分裂症和双相情感障碍
  • 批准号:
    8708150
  • 财政年份:
  • 资助金额:
    $ 38.59万
  • 项目类别:
Discriminating schizophrenia from bipolar disorder by N-way multimodal fusion of
通过 N 路多模态融合区分精神分裂症和双相情感障碍
  • 批准号:
    9108399
  • 财政年份:
  • 资助金额:
    $ 38.59万
  • 项目类别:
Discriminating schizophrenia from bipolar disorder by N-way multimodal fusion of
通过 N 路多模态融合区分精神分裂症和双相情感障碍
  • 批准号:
    8602556
  • 财政年份:
  • 资助金额:
    $ 38.59万
  • 项目类别:

相似国自然基金

基于年龄和空间的非随机混合对性传播感染影响的建模与研究
  • 批准号:
    12301629
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
  • 批准号:
    82304205
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 38.59万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 38.59万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
  • 批准号:
    10525098
  • 财政年份:
    2023
  • 资助金额:
    $ 38.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了