Elucidating how CRISPR-Cas Modulates the Spread of S. aureus Pathogenicity Islands
阐明 CRISPR-Cas 如何调节金黄色葡萄球菌致病岛的传播
基本信息
- 批准号:10473519
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-06 至 2025-08-05
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAutomobile DrivingBacteriaBacterial ChromosomesBacterial InfectionsBacteriophagesBiologicalBiological AssayCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunity-Acquired InfectionsComplexDataDevelopmentDiseaseDoctor of PhilosophyElementsEnterotoxinsEvolutionExcisionFellowshipFoundationsGTP-Binding Protein alpha Subunits, GsGenesGeneticGenetic TranscriptionGenomeGenus staphylococcusGoalsHorizontal Gene TransferImmunityImmunizationInfectionInvadedLaboratoriesLarvaLife Cycle StagesMeasuresMediatingMedicalMobile Genetic ElementsModelingMolecularMolecular GeneticsMulti-Drug ResistanceMultiple Bacterial Drug ResistanceNosocomial InfectionsPathogenesisPathogenicity IslandPhysiciansPlasmidsPopulationPrincipal InvestigatorRNAResearchRibonucleasesScientistStaphylococcus aureusSuperantigensSystemTestingTetracycline ResistanceTherapeuticToxic Shock SyndromeToxinTrainingVirulenceVirulence FactorsVirulentWorkadaptive immunityantimicrobialbasecareercolonization resistancecommensal microbesdesignexperimental studygenetic approachglobal healthin vivoinsightmulti-drug resistant pathogenmutantnovel therapeutic interventionnucleaseparticlepathogenpreventprogramsreproductiveresistance genestaphylococcal enterotoxintargeted treatmenttransmission process
项目摘要
PROJECT SUMMARY/ABSTRACT
Staphylococcus aureus is a major cause of both community-acquired and nosocomial infections, which have
become increasingly challenging to treat due to the widespread evolution of antimicrobial resistance. There is a
critical need for the development of alternative therapeutic approaches against multidrug-resistant bacteria that
also spare the protective commensal microbiota, which often provide colonization resistance against pathogens.
Bacterial disease is driven by S. aureus toxins and other virulence factors, which are mainly encoded by mobile
genetic elements (MGEs). In particular, numerous enterotoxins and the superantigen toxin causing Toxic Shock
Syndrome are all carried by a class of MGEs called the S. aureus Pathogenicity Islands (SaPIs), which spread
between bacteria by hijacking the reproductive machinery of bacteriophages. Staphylococci also possess
CRISPR-Cas systems, which provide adaptive immunity by blocking invading MGEs like phages and plasmids.
In this proposal, building upon preliminary data, I will test the central hypothesis that CRISPR-Cas systems also
prevent the transmission of SaPI elements and their associated virulence genes. In Aim 1, I will define the
complex tripartite interplay between staphylococcal CRISPR systems, SaPIs, and their helper phages using
various molecular and genetic approaches. In Aim 2, I will investigate the mechanisms by which SaPIs manage
to overcome CRISPR-mediated restriction and disseminate throughout bacterial populations. I anticipate that
these studies will elucidate both the molecular basis and biological consequences for CRISPR-SaPI interactions.
In Aim 3, I will evaluate whether CRISPR can be used to selectively kill SaPI-harboring S. aureus and establish
a proof-of-concept for CRISPR-based antimicrobials directed against virulence-encoding MGEs. The proposed
experiments will contribute to the long-term goal of designing alternative therapeutic approaches in an effort to
overcome the shortcomings of antibiotics in treating multidrug-resistant infections. This fellowship will support
my training in the Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, including my
doctoral work in the laboratory of Dr. Luciano Marraffini at Rockefeller and the remainder of my medical training
at Weill Cornell. The training plan outlined in this fellowship project is designed to optimally prepare me for a
research career as an independent principal investigator and physician-scientist.
项目概要/摘要
金黄色葡萄球菌是社区获得性感染和医院感染的主要原因,
由于抗菌素耐药性的广泛演变,治疗变得越来越困难。有一个
迫切需要开发针对多重耐药细菌的替代治疗方法
还保留了保护性共生微生物群,这些微生物群通常对病原体具有定植抵抗力。
细菌性疾病是由金黄色葡萄球菌毒素和其他毒力因子驱动的,这些毒力因子主要由移动编码
遗传元件(MGE)。特别是多种肠毒素和超抗原毒素会引起中毒性休克
综合症均由一类称为金黄色葡萄球菌致病岛 (SaPI) 的 MGE 携带,这些 MGE 会传播
通过劫持噬菌体的生殖机制来在细菌之间进行传播。葡萄球菌还具有
CRISPR-Cas 系统,通过阻断噬菌体和质粒等入侵的 MGE 来提供适应性免疫。
在本提案中,基于初步数据,我将测试核心假设,即 CRISPR-Cas 系统还
防止 SaPI 元件及其相关毒力基因的传播。在目标 1 中,我将定义
葡萄球菌 CRISPR 系统、SaPI 及其辅助噬菌体之间复杂的三方相互作用
各种分子和遗传学方法。在目标 2 中,我将研究 SaPI 管理的机制
克服 CRISPR 介导的限制并在整个细菌群体中传播。我预计
这些研究将阐明 CRISPR-SaPI 相互作用的分子基础和生物学后果。
在目标 3 中,我将评估 CRISPR 是否可用于选择性杀死携带 SaPI 的金黄色葡萄球菌并建立
针对毒力编码 MGE 的基于 CRISPR 的抗菌药物的概念验证。拟议的
实验将有助于设计替代治疗方法的长期目标,以努力
克服抗生素治疗多重耐药感染的缺点。该奖学金将支持
我在威尔康奈尔/洛克菲勒/斯隆凯特琳三机构医学博士项目中接受的培训,包括我的
在洛克菲勒大学 Luciano Marraffini 博士的实验室进行博士研究,并完成剩余的医学培训
在威尔康奈尔大学。该奖学金项目中概述的培训计划旨在为我做好最佳准备
作为独立首席研究员和医师科学家的研究生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dalton Van Banh其他文献
Dalton Van Banh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dalton Van Banh', 18)}}的其他基金
Elucidating how CRISPR-Cas Modulates the Spread of S. aureus Pathogenicity Islands
阐明 CRISPR-Cas 如何调节金黄色葡萄球菌致病岛的传播
- 批准号:
10315193 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Elucidating how CRISPR-Cas Modulates the Spread of S. aureus Pathogenicity Islands
阐明 CRISPR-Cas 如何调节金黄色葡萄球菌致病岛的传播
- 批准号:
10669746 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
环境中抗生素残留的人群暴露评估及其对肠道菌群结构和耐药性的影响
- 批准号:21806071
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
胍基修饰的抗菌高分子与抗生素的协同效应及其对细菌耐药性的影响
- 批准号:81803481
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
农药对农田土壤抗生素耐药性的影响机制研究
- 批准号:41703117
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
- 批准号:
10699065 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Infection-Dependent Vulnerabilities of Gram-negative Bacterial Pathogens
革兰氏阴性细菌病原体的感染依赖性脆弱性
- 批准号:
10592676 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Intestinal Microbiota Affect Stroke Outcome by Modulating the Dendritic Cell-regulatory T Cell Axis
肠道微生物群通过调节树突状细胞调节 T 细胞轴影响中风结果
- 批准号:
10751249 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别: