Multifunctional phase sensors for probing and manipulation of intracellular biomolecular condensates

用于探测和操纵细胞内生物分子凝聚物的多功能相位传感器

基本信息

  • 批准号:
    10473107
  • 负责人:
  • 金额:
    $ 140.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Intrinsically-disordered proteins (IDPs) are drivers of intracellular self-assembly. Powered by highly multivalent interactions, IDPs organize subcellular assemblies (biomolecular condensates) governed by liquid-liquid phase separation (LLPS) dynamics. From genomic organization to synaptic plasticity, biomolecular condensates influence wide-ranging cellular mechanisms. Despite these exciting insights, the biophysical and physiological properties of the underlying IDP-assemblies remain poorly understood. This knowledge gap is pervasive because existing tools to study IDPs and their LLPS require non-physiological conditions. The major challenge is the pronounced environmental sensitivity of IDPs. Their LLPS behavior is unpredictably altered by environmental and biochemical changes, including post-translational modifications (PTMs) and molecular tagging with fluorescent proteins. New tools are needed to dissect biomolecular condensates in their native cellular environments, within tissues. Progress towards in tissue non-disruptive probing of IDP-assemblies will close the gap separating IDP biophysics and IDP-linked disease mechanisms. Crucially, while IDP-assemblies are pathological hallmarks of untreatable degenerative brain disorders, decades-old and LLPS-refined observations have failed to provide mechanistic insights. Motivated by these challenges, this proposal advances biomolecular sensors to probe and manipulate intracellular IDP-assemblies in brain-like tissues. The crucial innovation is the encoding of ultra-weak and LLPS-specific multivalent interactions into engineered IDPs equipped with fluorescent and catalytic domains. The resulting IDPs will serve as multifunctional LLPS- sensors, enabling a strategic departure from molecular tagging of native IDPs. This engineering platform builds on fluorescent LLPS-sensors recently pioneered to illuminate LLPS dynamics in skin. By catalyzing biotinylation and protein-disaggregation, next-generation LLPS-sensors will enable biomolecular dissection of IDP-assemblies and provide tools for combating neuropathological IDP-assemblies. To advance and deploy these innovations, this proposal will engineer and interrogate multifunctional LLPS-sensors in state-of-the-art brain organoid models of Alzheimer's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Combining sensor-enabled live cell imaging and proximity proteomics, the proposed experimental approaches will address long-standing key questions linking pathological IDP-assemblies and major human neurodegenerative disorders. By adding molecular tools and rigor to the modeling of neuropathology in brain organoids, this work will enable and stimulate molecular-level dissection of age-dependent human neurodegeneration. Beyond generating therapeutic insights into IDP-driven mechanisms of neurodegeneration, this proposal will advance a broadly applicable sensor-organoid platform to study biomolecular condensates across biological systems.
项目摘要/摘要 固有的蛋白质(IDP)是细胞内自组装的驱动因素。由高度多价动力 IDP相互作用,组织了亚细胞组件(生物分子冷凝水),该组件受液态液相控制的 分离(LLP)动力学。从基因组组织到突触可塑性,生物分子冷凝水 影响广泛的细胞机制。尽管有这些令人兴奋的见解,但生物物理和生理学 基础IDP组件的特性仍然很少理解。这个知识差距无处不在 因为现有的研究IDP及其LLP的工具需要非生理条件。主要挑战 是IDP的明显环境灵敏度。他们的LLP行为被不可预测 环境和生化变化,包括翻译后修饰(PTM)和分子 用荧光蛋白标记。需要新工具来剖析其本地的生物分子冷凝物 细胞环境,组织内。在组织非干扰性探测IDP组件中的进展将 缩小分隔IDP生物物理学和IDP连接疾病机制的差距。至关重要的是IDP组件 是不可治疗的退化性脑疾病的病理标志,数十年且有LLP的脑部疾病 观察结果未能提供机械见解。受这些挑战的动机,该提议 进步生物分子传感器,以探测和操纵细胞内IDP分配在脑样组织中。这 关键创新是对工程的超湿和LLPS特异性多价交互的编码 配备荧光和催化域的IDP。最终的IDP将用作多功能LLP- 传感器,使人可以与本机IDP的分子标记进行战略偏离。这个工程平台构建 在荧光LLPS传感器上,最近率先启用了皮肤中的LLPS动力学。通过催化 生物素化和蛋白质 - 分散,下一代LLPS传感器将使生物分子解剖 IDP组件并提供用于对抗神经病理IDP组件的工具。进步和部署 这些创新,该提案将在最新技术中设计和询问多功能LLPS传感器 阿尔茨海默氏病,额颞痴呆和肌萎缩性侧索硬化症的脑器官模型。 结合了启用传感器的活细胞成像和接近蛋白质组学,提出的实验方法 将解决将病理IDP组件和主要人类的重要问题解决的长期关键问题 神经退行性疾病。通过将分子工具和严格添加到大脑中神经病理学的建模中 类器官,这项工作将使并刺激依赖年龄的人的分子级解剖 神经变性。除了对IDP驱动的神经变性机制产生治疗见解, 该提案将推进一个广泛适用的传感器 - 甲然平台,用于研究生物分子冷凝水 跨生物系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Felipe Garcia Quiroz其他文献

Felipe Garcia Quiroz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Core B: B-HEARD Core
核心 B:B-HEARD 核心
  • 批准号:
    10555691
  • 财政年份:
    2023
  • 资助金额:
    $ 140.85万
  • 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
  • 批准号:
    10655819
  • 财政年份:
    2023
  • 资助金额:
    $ 140.85万
  • 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
  • 批准号:
    10660332
  • 财政年份:
    2023
  • 资助金额:
    $ 140.85万
  • 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
  • 批准号:
    10722568
  • 财政年份:
    2023
  • 资助金额:
    $ 140.85万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 140.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了