Using Machine Learning to predict daily PTSD and cannabis use disorder symptoms among non-treatment seeking veterans
使用机器学习预测未寻求治疗的退伍军人的日常创伤后应激障碍和大麻使用障碍症状
基本信息
- 批准号:10470791
- 负责人:
- 金额:$ 20.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAffectAfghanistanAmericanApplications GrantsArtificial IntelligenceBackBehavior TherapyCannabisCaringCellular PhoneCommunitiesConflict (Psychology)DataData CollectionData ReportingDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly InterventionEnrollmentEnvironmentEpidemiologyEventExerciseFemaleFutureGeneral PopulationGoalsHealthcare SystemsHeart RateIndividualInterventionIraqLeadLegalLifeLocationMachine LearningMental DepressionMental HealthMental disordersMethodsMilitary PersonnelModelingMoodsParticipantPatient Self-ReportPatientsPopulationPost-Traumatic Stress DisordersPreventionRecording of previous eventsReportingResearchRiskRisk AssessmentSamplingSeveritiesSleepStressSurveysSymptomsTechniquesTestingTimeUnited States Department of Veterans AffairsVariantVeteransacceptability and feasibilitybaseclinical applicationclinical predictorsclinically significantcommon symptomcomorbiditydata streamsdiariesfitbitfollow-uphandheld mobile devicehealth care servicehigh riskimprovedinnovationinterestmachine learning algorithmmachine learning modelmalemarijuana usemarijuana use disordermeetingsmilitary veterannew technologypost-traumatic symptomspreventive interventionpsychologicrecruitresearch studyscreeningsubstance usesuccesstrauma exposurewearable device
项目摘要
PROJECT SUMMARY
Posttraumatic stress disorder (PTSD) is the highest co-occurring disorder among veterans who report
problematic cannabis use. However, many veterans fail to seek or engage with health care services for both
conditions, and as a result, increases in symptom severity and corresponding risk may go undetected and
unmanaged. Although there is increasing interest in reaching non-treatment-seeking veterans by delivering
just-in-time interventions via mobile devices, such interventions require a clear understanding of when veterans
with PTSD and problematic cannabis use are at heightened risk for escalating symptoms. Despite ongoing
efforts to identify veterans who need support for mental health and substance use difficulties at the time of
reintegration (upon return from deployment), these efforts have achieved minimal success. Machine learning--
a special form of artificial intelligence that aids in classifying individuals into risk profiles--may have promise in
improving risk assessment and symptom escalation. Machine learning algorithms applied to passively-
collected data from mobile and wearable devices (e.g., accelerometer data, time spent looking at screens,
sleep data, exercise, GPS data) could be a promising, minimal-burden strategy to detect periods of risk and
ultimately inform just-in-time interventions. Passive data from smartphones and wearable devices has been
used in machine learning algorithms to predict risk for PTSD and other conditions (e.g., depression), but has
not been applied to the prediction of PTSD and cannabis use or the understanding of the interplay between
these conditions. Although past research has successfully engaged veterans in passive data collection and this
strategy would be lower-burden than active data collection, it is unclear whether this is a feasible approach in
clinical applications. Thus, the objective of this application is to understand the utility of passive data, in
conjunction with self-report data or alone, in predicting clinically significant escalations in PTSD symptoms and
problematic cannabis use among non-treatment seeking veterans who have recently discharged from the
military. Seventy-five male and female non-treatment-seeking veterans with a history of trauma exposure and
past-month cannabis use who are within six months of civilian reintegration will be recruited online. Participants
will be given a FitBit and install the passive and active data collection app on their smartphone (HeadSmart).
They will complete a baseline and three monthly follow-up surveys. Further, over the observation period,
veterans will complete brief daily surveys of PTSD symptoms and cannabis use, and passive data will be
recorded. Passive and daily diary data will be analyzed in machine learning algorithms to predict symptom
escalation and future caseness (e.g., presence of clinically significant increase) (Aim 1) and understand
daily/weekly symptom interplay (Aim 2). We will also assess the feasibility and acceptability of this approach
(Aim 3). The results of this research will ultimately inform prevention or early intervention efforts among this
high-need population of veterans.
项目概要
创伤后应激障碍 (PTSD) 是退伍军人中最常见的并发疾病
有问题的大麻使用。然而,许多退伍军人未能寻求或参与医疗保健服务
情况,因此,症状严重程度的增加和相应的风险可能未被发现,
不受管理。尽管人们越来越有兴趣通过提供服务来接触未寻求治疗的退伍军人
通过移动设备进行及时干预,此类干预需要清楚地了解退伍军人何时
患有创伤后应激障碍(PTSD)和有问题的大麻使用导致症状升级的风险更高。尽管正在进行
努力确定在服役期间因心理健康和药物使用困难而需要支持的退伍军人
重返社会(部署返回后),这些努力收效甚微。机器学习——
一种特殊形式的人工智能,有助于将个人分类为风险状况——可能有希望
改进风险评估和症状升级。机器学习算法应用于被动
从移动和可穿戴设备收集数据(例如,加速度计数据、查看屏幕的时间、
睡眠数据、运动数据、GPS 数据)可能是一种有前途的、负担最小的策略,用于检测风险期和
最终为及时干预提供信息。来自智能手机和可穿戴设备的被动数据已被
用于机器学习算法来预测 PTSD 和其他病症(例如抑郁症)的风险,但已
尚未应用于 PTSD 和大麻使用的预测或对两者之间相互作用的理解
这些条件。尽管过去的研究已成功地让退伍军人参与被动数据收集,而这一点
该策略比主动数据收集的负担更低,目前尚不清楚这是否是一种可行的方法
临床应用。因此,该应用程序的目的是了解被动数据的效用,
结合自我报告数据或单独预测 PTSD 症状和临床显着升级
最近退伍的未寻求治疗的退伍军人使用大麻的问题
军队。七十五名男性和女性非寻求治疗的退伍军人,有外伤暴露史和
过去一个月吸食大麻且在重返社会六个月内的人将在网上招募。参加者
将获得 FitBit 并在其智能手机上安装被动和主动数据收集应用程序 (HeadSmart)。
他们将完成基线调查和三个月的后续调查。此外,在观察期内,
退伍军人将完成关于创伤后应激障碍症状和大麻使用的简短每日调查,被动数据将被
记录了。将使用机器学习算法分析被动日记数据和每日日记数据以预测症状
升级和未来的情况(例如,临床上显着增加的存在)(目标 1)并了解
每日/每周症状相互作用(目标 2)。我们还将评估这种方法的可行性和可接受性
(目标 3)。这项研究的结果最终将为这些疾病的预防或早期干预工作提供信息
高需求的退伍军人人口。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Longitudinal associations between insomnia, cannabis use and stress among US veterans.
美国退伍军人失眠、大麻使用和压力之间的纵向关联。
- DOI:10.1111/jsr.13945
- 发表时间:2024
- 期刊:
- 影响因子:4.4
- 作者:Davis,JordanP;Prindle,John;Saba,ShaddyK;Castro,CarlA;Hummer,Justin;Canning,Liv;Pedersen,EricR
- 通讯作者:Pedersen,EricR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan P Davis其他文献
Jordan P Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan P Davis', 18)}}的其他基金
Multimethod Examination of Individual and Environmental Factors Associated with Alcohol Use and Behavioral Health Care Disparities Among Racial/Ethnic Minority and Women Veterans
对种族/族裔少数群体和女性退伍军人中与饮酒和行为保健差异相关的个人和环境因素进行多方法检查
- 批准号:
10721113 - 财政年份:2023
- 资助金额:
$ 20.34万 - 项目类别:
Using Machine Learning to predict daily PTSD and cannabis use disorder symptoms among non-treatment seeking veterans
使用机器学习预测未寻求治疗的退伍军人的日常创伤后应激障碍和大麻使用障碍症状
- 批准号:
10217655 - 财政年份:2021
- 资助金额:
$ 20.34万 - 项目类别:
Development of a Mobile Mindfulness Intervention for Alcohol Use Disorder and PTSD among OEF/OIF Veterans
开发针对 OEF/OIF 退伍军人酒精使用障碍和 PTSD 的移动正念干预措施
- 批准号:
9979357 - 财政年份:2020
- 资助金额:
$ 20.34万 - 项目类别:
Development of a Mobile Mindfulness Intervention for Alcohol Use Disorder and PTSD among OEF/OIF Veterans
开发针对 OEF/OIF 退伍军人酒精使用障碍和 PTSD 的移动正念干预措施
- 批准号:
10263953 - 财政年份:2020
- 资助金额:
$ 20.34万 - 项目类别:
Development of a Mobile Mindfulness Intervention for Alcohol Use Disorder and PTSD among OEF/OIF Veterans
开发针对 OEF/OIF 退伍军人酒精使用障碍和 PTSD 的移动正念干预措施
- 批准号:
10471331 - 财政年份:2020
- 资助金额:
$ 20.34万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Recruitment of Cerebellar Circuits with Balance Training for Cognitive Rehabilitation in a Mouse Model of Mild Traumatic Brain Injury
在轻度创伤性脑损伤小鼠模型中通过平衡训练募集小脑回路进行认知康复
- 批准号:
10753349 - 财政年份:2023
- 资助金额:
$ 20.34万 - 项目类别:
Amnion cell secretome mediated therapy for traumatic brain injury
羊膜细胞分泌组介导的创伤性脑损伤治疗
- 批准号:
10746655 - 财政年份:2023
- 资助金额:
$ 20.34万 - 项目类别:
Persistent Pre- and Post-Synaptic Changes After Moderate Traumatic Brain Injury and Mitigation with MitoQ
中度创伤性脑损伤后持续的突触前和突触后变化以及 MitoQ 的缓解
- 批准号:
10643137 - 财政年份:2023
- 资助金额:
$ 20.34万 - 项目类别:
Posttraumatic Stress Disorder, Accelerated Biological Aging, and Veteran Health
创伤后应激障碍、加速生物衰老和退伍军人健康
- 批准号:
10705915 - 财政年份:2023
- 资助金额:
$ 20.34万 - 项目类别:
Alleviation of chronic TBI through modulation of calcium signaling
通过调节钙信号传导缓解慢性 TBI
- 批准号:
10700780 - 财政年份:2023
- 资助金额:
$ 20.34万 - 项目类别: