Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
基本信息
- 批准号:10369017
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-10 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AdsorptionAreaAttenuatedBacteriaBehaviorBiodegradationBioremediationsCarbonCarbon BlackCharacteristicsChemicalsCoalCollaborationsConsultCoupledDataDevelopmentDiffusionElectric ConductivityEngineeringEnvironmentEnvironmental Engineering technologyGrowthHydrophobicityIndividualInjectionsInterdisciplinary StudyInvestigationKineticsKnowledgeLaboratoriesLaboratory StudyLearningLife Cycle StagesMetabolic BiotransformationMicroscopyModelingNatural graphiteOrganismOxidantsPartition CoefficientPerformancePlantsPolychlorinated BiphenylsPopulationProcessPropertyReactionResearchRoleSilicon DioxideSiteSolidSorting - Cell MovementSourceSurfaceTechnologyTestinganthropogenesisbasechemical propertycontaminated sedimentdechlorinationdehalogenationdesigneffectiveness evaluationengineering designenvironmental chemicalexperimental studyfield studygeochemistryground waterimprovedinnovationlaboratory experimentmass fluxmaterials sciencemathematical modelmicrobialmicrobial communitymicroorganismmicroorganism interactionmodels and simulationmultidisciplinarynew technologyparticlephysical propertypollutantremediationsuperfund sitesynergismtransmission process
项目摘要
PROJECT SUMMARY
There is a lack of fundamental understanding on how microbial breakdown of chlorinated
organic compounds is influenced by the presence of sorptive surfaces. Several laboratory and
field studies have demonstrated a synergy between sorptive materials and microorganisms
leading to the development of material aided delivery of bioamendments in both groundwater
and sediment applications. However, a mechanistic understanding of the relationship between
sorptive surfaces and microbial dechlorination is lacking. To fill this critical knowledge gap, this
research team of chemical/environmental engineers and microbiologists will investigate the
fundamental mechanism of microbial dechlorination of chlorinated organics on sorptive surfaces
and develop quantitative models that allow optimization and engineering scaleup of enhanced
bioremediation aided by materials engineering. Improved understanding will allow better
prediction of the degradation of sorbed chemicals in the environment and enable optimization of
material science aided technologies for the delivery of biodegradation technologies.
The project will target chlorinated organics ranging from less hydrophobic compounds like
chloroethenes typically associated with groundwater and strongly hydrophobic compounds such
as PCBs typically associated with sediments. These pollutants will be investigated individually
as well as in mixtures that are commonly encountered at Superfund sites. A set of carbon-based
sorbent materials will be produced in the laboratory to provide a range of physical and chemical
properties. In addition to the lab synthesized materials, two most commonly used activated
carbons (bituminous coal based, and coconut shell based) and graphite will be tested in parallel
for comparison. Through systematic laboratory experiments, the physical and chemical
properties (such as specific surface area, pore size distribution, electron accepting capacity, and
carbon content) will be evaluated for influence on the sorption characteristics and synergy with
biodegradation of chloroethenes and PCBs. Final material selection will also be guided by
environmental sustainability considerations. Sorption and biokinetics data from the experimental
studies with optimized materials will be synthesized into advanced site models to predict
material behavior for field-scale remedial applications. Results from the modeling simulations
will allow for optimization of the engineering design for pilot and full-scale applications at
contaminated groundwater and sediment Superfund sites. This platform of combining tailored
materials with biodegradation will be adaptable for targeting other pollutant mixtures.
项目概要
对于微生物如何分解氯化物缺乏基本了解
有机化合物受吸附表面存在的影响。多个实验室和
实地研究表明吸附材料和微生物之间存在协同作用
导致了地下水中生物改良剂材料辅助输送的发展
和沉积物应用。然而,对两者之间关系的机械理解
缺乏吸附表面和微生物脱氯。为了填补这一关键的知识空白,这
由化学/环境工程师和微生物学家组成的研究小组将调查
吸附表面上氯化有机物微生物脱氯的基本机制
并开发定量模型,允许增强的优化和工程放大
材料工程辅助的生物修复。加深理解将有助于更好地
预测环境中吸附的化学物质的降解并实现优化
用于提供生物降解技术的材料科学辅助技术。
该项目将针对氯化有机物,包括疏水性较低的化合物,例如
氯乙烯通常与地下水和强疏水性化合物有关,例如
PCB 通常与沉积物相关。这些污染物将被单独调查
以及超级基金网站上常见的混合物。一套碳基
吸附剂材料将在实验室生产,以提供一系列物理和化学性能
特性。除了实验室合成材料外,两种最常用的活性材料
碳(烟煤基和椰壳基)和石墨将并行测试
进行比较。通过系统的实验室实验,物理和化学
性质(例如比表面积、孔径分布、电子接受能力和
碳含量)将评估对吸附特性的影响以及与
氯乙烯和多氯联苯的生物降解。最终材料选择也将遵循
环境可持续性考虑。实验中的吸附和生物动力学数据
优化材料的研究将被合成到先进的场地模型中以进行预测
现场规模补救应用的材料行为。建模模拟的结果
将允许优化试点和全面应用的工程设计
受污染的地下水和沉积物超级基金场地。这个平台结合了量身定制的
具有生物降解性的材料将适用于针对其他污染物混合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Upal Ghosh其他文献
Upal Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Upal Ghosh', 18)}}的其他基金
Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
- 批准号:
10156648 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
- 批准号:
10542369 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
DEVELOPMENT OF IN-SITU MERCURY REMEDIATION APPROACHES BASED ON METHYLMERCURY BIOA
基于甲基汞生物分析法的原位汞修复方法的开发
- 批准号:
9285800 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
DEVELOPMENT OF IN-SITU MERCURY REMEDIATION APPROACHES BASED ON METHYLMERCURY BIOA
基于甲基汞生物分析法的原位汞修复方法的开发
- 批准号:
8756948 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Combining bioavailability assays with modeling to predict PCBs in fish after reme
将生物利用度测定与建模相结合来预测修复后鱼类中的 PCB
- 批准号:
8230160 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Combining bioavailability assays with modeling to predict PCBs in fish after reme
将生物利用度测定与建模相结合来预测修复后鱼类中的 PCB
- 批准号:
8336827 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Combining bioavailability assays with modeling to predict PCBs in fish after reme
将生物利用度测定与建模相结合来预测修复后鱼类中的 PCB
- 批准号:
8514611 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Pilot-scale Research of Novel Amendment Delivery for in-situ Sediment Remediation
沉积物原位修复新型修复剂输送中试研究
- 批准号:
7919678 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Pilot-scale Research of Novel Amendment Delivery for in-situ Sediment Remediation
沉积物原位修复新型修复剂输送中试研究
- 批准号:
7340895 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Pilot-scale Research of Novel Amendment Delivery for in-situ Sediment Remediation
沉积物原位修复新型修复剂输送中试研究
- 批准号:
7666761 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Highly Sensitive and Robust Blood Test Platform for Screening and Early Detection of Alzheimer's Disease
用于筛查和早期检测阿尔茨海默病的高灵敏度和稳健的血液检测平台
- 批准号:
10515572 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
- 批准号:
10156648 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Leveraging the chemo-physical interaction of halorespiring bacteria with solid surfaces to enhance halogenated organic compounds bioremediation
利用嗜盐细菌与固体表面的化学物理相互作用来增强卤化有机化合物的生物修复
- 批准号:
10542369 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Designing the next generation of highly selective sorbent materials for remediation of target inorganic contaminants in aqueous systems
设计下一代高选择性吸附剂材料,用于修复水系统中的目标无机污染物
- 批准号:
10332732 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别: