Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
基本信息
- 批准号:10369732
- 负责人:
- 金额:$ 8.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
ANCA-associated vasculitis (AAV) is a small vessel vasculitis associated with disease- and treatment-related
complications that contribute to reduced quality of life and excess mortality compared to the general
population. In the context of improving rates of flare and mortality with contemporary treatments, increasing
attention is shifting to complications (e.g., renal failure, infection, cardiovascular disease) as clinically-relevant
and patient-oriented outcomes. However, our understanding of how best to address and prevent complications
is limited because they are typically studied in isolation from a “single disease framework.” We do not
understand how complications tend to co-occur in individuals in complication clusters. Moreover, with several
available treatment options for AAV, comparative effectiveness studies using real-world experience data and
relevant outcomes like complication clusters are needed to guide treatment decisions in a manner that
personalizes care, improves quality of life, and reduces mortality. However, we do not have the methods to
accurately and efficiently assemble an AAV cohort using state-of-the-art algorithms that leverage
heterogeneous claims and electronic health record (EHR) data. The aims of this proposal are to (1) apply
advanced clinical informatics methods (i.e., machine learning and natural language processing) to identify AAV
cases in big data to assemble a large cohort and (2) determine complication clusters in an AAV cohort by
applying latent transition analysis. To achieve these aims, we will leverage methodologic expertise developed
through collaborations established during the PI’s K23 and use a novel data source that includes EHR data
linked to Medicare and Medicaid claims. The PI’s team has previously demonstrated that unstructured (i.e.,
free-text) EHR data can be used to study topics mentioned in clinical notes of AAV patients and that keywords
in these notes can help identify AAV patients but neither machine learning nor sophisticated natural language
processing have been previously used to identify AAV cases. In addition, our prior work has examined AAV
complications in isolation (e.g., renal disease, cardiovascular disease) but here we seek to identify phenotypes
of complications (complication clusters) that tend to co-occur in patients, how patients transition between
clusters over time, and what factors predict a person’s membership in a complication cluster. The major goal of
this proposal is to build further preliminary data in preparation for an R01 application over the next 24 months.
The planned R01 will focus on comparative effectiveness studies in AAV using cohorts assembled in big data
and clinically-relevant, patient-oriented outcomes, like complication clusters. The results of these studies can
then be used as inputs in simulation models built during my K23 to guide optimal patient-oriented treatment
decisions. Ultimately, the goal of this research program is to improve quality of life and reduce complications
and mortality by using data to inform personalized approaches to AAV treatment.
项目摘要
与ANCA相关的血管炎(AAV)是与疾病和治疗有关的小血管血管炎
与一般的并发症导致生活质量降低和过剩死亡率的并发症
人口。在通过当代治疗提高耀斑和死亡率的背景下,增加
注意并发症(例如,肾衰竭,感染,心血管疾病)的并发症转移为临床上的相关性
和面向患者的结果。但是,我们对如何最好地解决和预防并发症的理解
之所以受到限制,是因为它们通常是从“单个疾病框架”隔离的。我们没有
了解并发症如何在并发症簇中的个体中共发生。而且,有几个
使用现实世界经验数据和
需要相关结果,例如并发簇,以指导治疗决策的方式
个性化护理,改善生活质量并降低死亡率。但是,我们没有方法
精确有效地使用利用最先进的算法组装AAV队列
异质索赔和电子健康记录(EHR)数据。该提案的目的是(1)申请
先进的临床信息方法(即机器学习和自然语言处理)来识别AAV
大数据中的情况以组装大型队列,(2)通过
应用潜在过渡分析。为了实现这些目标,我们将利用开发的方法论专业知识
通过在PI的K23期间建立的合作,并使用包含EHR数据的新型数据源
与Medicare和Medicaid索赔有关。 PI的团队以前已经证明了这一点(即
自由文本)EHR数据可用于研究AAV患者临床注释中提到的主题和关键词
在这些笔记中可以帮助识别AAV患者,但没有机器学习或精致的自然语言
处理以前已用于识别AAV案例。此外,我们先前的工作已经检查了AAV
孤立的并发症(例如肾脏疾病,心血管疾病),但在这里我们试图识别表型
患者倾向于同时发生的并发症(并发症簇),患者如何过渡
群集会随着时间的流逝,以及哪些因素可以预测一个人在并发症集群中的成员资格。主要目标
该建议是建立进一步的初步数据,以准备在接下来的24个月内进行R01应用程序。
计划中的R01将使用大数据组装的同类群体专注于AAV中的比较有效性研究
以及临床上的,以患者为导向的结果,例如并发症簇。这些研究的结果可以
然后在我的K23期间构建的模拟模型中用作输入,以指导最佳的以患者为导向的治疗
决定。最终,该研究计划的目标是改善生活质量并减少并发症
通过使用数据为AAV治疗的个性化方法告知死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Zachary Scott Wall...的其他基金
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:1029227010292270
- 财政年份:2021
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
- 批准号:1019810310198103
- 财政年份:2021
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:98861619886161
- 财政年份:2018
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:1037298910372989
- 财政年份:2018
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:1046225710462257
- 财政年份:2023
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:1054356910543569
- 财政年份:2023
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:1055157610551576
- 财政年份:2023
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
- 批准号:1069896910698969
- 财政年份:2023
- 资助金额:$ 8.32万$ 8.32万
- 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:1069896510698965
- 财政年份:2023
- 资助金额:$ 8.32万$ 8.32万
- 项目类别: