Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
基本信息
- 批准号:10369732
- 负责人:
- 金额:$ 8.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ANCA vasculitisAddressAlgorithmsAntineutrophil Cytoplasmic AntibodiesAttentionBig DataCardiovascular DiseasesCardiovascular systemCaringCessation of lifeChronicClinicalClinical InformaticsCodeCollaborationsComplicationDataData SetData SourcesDecision MakingDevelopmentDiabetes MellitusDiagnosisDiagnosticDiseaseDisease ClusteringsElectronic Health RecordEpidemiologyExcess MortalityFlareGeneral PopulationGoalsHeadHealthcare SystemsHypertensionIndividualInfectionInflammationInformaticsKidneyKidney DiseasesKidney FailureKnowledgeLeftLinkLogistic RegressionsLung diseasesMachine LearningMedicaidMedicareMedicare claimMedicare/MedicaidMetabolicMethodologyMethodsModificationNatural Language ProcessingObesityOrganOutcomeOutcome MeasurePatientsPerformancePersonsPharmaceutical PreparationsPhenotypePositioning AttributePredictive FactorPreparationProviderPublishingQuality of lifeRemission InductionResearchRespiratory Tract InfectionsRheumatismRiskRisk FactorsSamplingStructureTest ResultTextTimeTreatment EffectivenessTreatment-related toxicityVasculitisWorkbasecase findingclinically relevantcohortcomparative effectiveness studycomparative efficacydata resourceexperiencehigh riskimprovedimproved outcomemachine learning algorithmmodels and simulationmortalitymortality risknovelpatient orientedpatient populationperson centeredpersonalized approachpersonalized carepersonalized medicinepreventprogramsrespiratorystructured datatreatment comparisontreatment strategyunstructured data
项目摘要
PROJECT SUMMARY
ANCA-associated vasculitis (AAV) is a small vessel vasculitis associated with disease- and treatment-related
complications that contribute to reduced quality of life and excess mortality compared to the general
population. In the context of improving rates of flare and mortality with contemporary treatments, increasing
attention is shifting to complications (e.g., renal failure, infection, cardiovascular disease) as clinically-relevant
and patient-oriented outcomes. However, our understanding of how best to address and prevent complications
is limited because they are typically studied in isolation from a “single disease framework.” We do not
understand how complications tend to co-occur in individuals in complication clusters. Moreover, with several
available treatment options for AAV, comparative effectiveness studies using real-world experience data and
relevant outcomes like complication clusters are needed to guide treatment decisions in a manner that
personalizes care, improves quality of life, and reduces mortality. However, we do not have the methods to
accurately and efficiently assemble an AAV cohort using state-of-the-art algorithms that leverage
heterogeneous claims and electronic health record (EHR) data. The aims of this proposal are to (1) apply
advanced clinical informatics methods (i.e., machine learning and natural language processing) to identify AAV
cases in big data to assemble a large cohort and (2) determine complication clusters in an AAV cohort by
applying latent transition analysis. To achieve these aims, we will leverage methodologic expertise developed
through collaborations established during the PI’s K23 and use a novel data source that includes EHR data
linked to Medicare and Medicaid claims. The PI’s team has previously demonstrated that unstructured (i.e.,
free-text) EHR data can be used to study topics mentioned in clinical notes of AAV patients and that keywords
in these notes can help identify AAV patients but neither machine learning nor sophisticated natural language
processing have been previously used to identify AAV cases. In addition, our prior work has examined AAV
complications in isolation (e.g., renal disease, cardiovascular disease) but here we seek to identify phenotypes
of complications (complication clusters) that tend to co-occur in patients, how patients transition between
clusters over time, and what factors predict a person’s membership in a complication cluster. The major goal of
this proposal is to build further preliminary data in preparation for an R01 application over the next 24 months.
The planned R01 will focus on comparative effectiveness studies in AAV using cohorts assembled in big data
and clinically-relevant, patient-oriented outcomes, like complication clusters. The results of these studies can
then be used as inputs in simulation models built during my K23 to guide optimal patient-oriented treatment
decisions. Ultimately, the goal of this research program is to improve quality of life and reduce complications
and mortality by using data to inform personalized approaches to AAV treatment.
项目摘要
与ANCA相关的血管炎(AAV)是与疾病和治疗有关的小血管炎
与一般的并发症导致生活质量降低和过度荒谬的并发症
人口。
注意正在转变为临床与临床相关的汇编(例如肾衰竭,感染,心血管疾病)
和以患者为导向的结果。
之所以有限,是因为它们是典型的与“单一疾病框架”隔离的。
了解汇编如何在汇编集群中同时发生。
使用现实世界经验数据和
需要相关结果,例如编译簇,以指导阿曼纳的治疗决策
个性化护理,改善生活质量并降低死亡率。
精确有效地使用利用最新算法组装AAV队列
异类索赔和电子健康记录(EHR)数据。
先进的临床信息方法(即机器学习和自然语言处理)来牙齿化AAV
大数据中的Causs组装大型队列,(2)确定AAV队列中的并发症簇By By By By Bye Bye
应用潜在的过渡分析来实现这些目标
通过在PI的K23期间建立的合作并使用新颖的数据源包括EHR数据
与Medicare和Medicaid索赔有关。
自由文本)EHR数据可用于研究AAV患者AAV患者的临床注意事项和关键词的临床注释中的主题
在这些笔记中可以帮助识别AAV患者,但没有机器学习态度自然语言
处理以前已用于识别AAV案例。
孤立的并发症(例如肾脏疾病,心血管疾病),但在这里我们试图识别表型
倾向于在患者中共同发生的汇编(并发症簇),患者如何过渡
群集随着时间的流逝,哪些因素可以预测一个人的汇编集群的成员资格。
该提案是建立进一步的预预制作数据,以准备在接下来的24个月内进行R01申请。
计划中的R01将使用大数据组装的同类群体专注于AAV中的比较有效性研究
和临床上的面向患者的结果,例如汇编群。
然后在我的K23期间构建的模拟模型中用作输入,以指导最佳的面向患者的治疗
决定最终,该研究计划的目的是改善生活
通过使用数据为AAV治疗的个性化方法告知死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Scott Wallace其他文献
Zachary Scott Wallace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Scott Wallace', 18)}}的其他基金
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:
10292270 - 财政年份:2021
- 资助金额:
$ 8.32万 - 项目类别:
Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
- 批准号:
10198103 - 财政年份:2021
- 资助金额:
$ 8.32万 - 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:
9886161 - 财政年份:2018
- 资助金额:
$ 8.32万 - 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
- 批准号:
10372989 - 财政年份:2018
- 资助金额:
$ 8.32万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 8.32万 - 项目类别:
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 8.32万 - 项目类别:
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
- 批准号:
10698969 - 财政年份:2023
- 资助金额:
$ 8.32万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 8.32万 - 项目类别: