Determining how 2'-O-methylations in the eukaryotic anticodon loop region of tRNA are formed and how they affect translation
确定 tRNA 真核反密码子环区域中 2-O-甲基化的形成方式以及它们如何影响翻译
基本信息
- 批准号:10438971
- 负责人:
- 金额:$ 41.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsAnimal ModelAnimalsAnticodonAwardBindingBiochemicalBiochemistryBiologicalBiological AssayBiomedical ResearchCandidate Disease GeneCell physiologyCellsChemicalsCodon NucleotidesDefectDiseaseDrosophila genusEnzymesEukaryotaExposure toFission YeastFundingGene-ModifiedGenerationsGenesGeneticGrantGrowthHealthHomologous GeneHumanIndividualInstitutionIntellectual functioning disabilityKentuckyKnowledgeLinkMalignant NeoplasmsMammalian CellMethylationMethyltransferaseModernizationModificationMolecularMolecular BiologyMutationNon-Insulin-Dependent Diabetes MellitusObesityOrganismPhenotypePlantsPolycystic Ovary SyndromePositioning AttributeProcessProteinsRNARNA BindingRNA-Binding ProteinsReporterResearchResearch PersonnelResearch Project GrantsRoleSaccharomyces cerevisiaeSaccharomycetalesScienceSequence AlignmentSite-Directed MutagenesisStressStudentsTechniquesTestingTrainingTransfer RNATranslationsUnited States National Institutes of HealthUniversitiesVariantWorkX-linked mental retardation 9Yeastscareercell growthexperimental studyhuman diseaseinsightknock-downmutantnervous system disorderoverexpressionprotein functionprotein protein interactiontoolundergraduate student
项目摘要
ABSTRACT
Translation is a key step in the overall process that cells use to convert genes into proteins, and defects in
translation are linked to many human diseases. A critical component of translation is transfer RNA (tRNA),
which must be extensively chemically modified by numerous cellular enzymes to function properly. Many of
these enzymes and the tRNA modifications that they form are conserved in eukaryotic organisms ranging from
single-celled budding yeast to multi-cellular organisms such as humans, thus making yeast a powerful model
organism for studying the roles of tRNA modifications. Importantly, defects in tRNA modifications cause
diverse neurological disorders such as intellectual disability (ID), and are linked to many other diseases. This
NIH R15 AREA proposal seeks to expose undergraduate students to modern biomedical research by
advancing the field of tRNA modification research in three ways. First, we propose to study yeast Trm732, a
protein which binds to the methyltransferase Trm7 to form a highly conserved modification at position 32
located in the critical anticodon loop (ACL) region of the tRNA. In addition, we will study yeast Trm734, which
also binds to Trm7 to form a conserved modification at tRNA position 34 in the ACL. Defects in these
modifications due to mutations in human TRM7 (known as FTSJ1) cause ID. Moreover, human TRM732
(THADA) is linked to type 2 diabetes, obesity, and polycystic ovary syndrome, and human TRM734 (WDR6)
also has links to human health. Thus, in Aim 1 of the proposal, students will perform biochemical experiments
to determine the roles of Trm732 and Trm734 in tRNA modification by Trm7. In our previous round of funding,
students identified Trm732 and Trm734 variant proteins lacking tRNA modification activity, which will be
valuable tools to understand how each protein functions in tRNA modification. Second, although the
cumulative role of these modifications at 32 and 34 have been studied previously, little is known about the
individual role of each modification by itself. Thus, in Aim 2 we propose to determine how each modification
individually affects translation in yeast, as well as in cultured human and fruit fly cells. Third, we propose to
identify the gene required to form a human tRNA ACL modification not found in yeast, and to study its role in
translation. In Aim 3 we will finish our work to identify the enzyme that adds a modification to position 39 of
certain human, animal, and plant tRNAs. Students will continue to test candidate genes for the modification
activity using approaches that we developed previously to identify other tRNA modification genes. Once the
gene is identified, we will use reporter assays to determine the role of this modification in translation. The
research proposed herein meets the criteria of the NIH R15 AREA award because it gives undergraduate
students the opportunity to fully participate in research that will increase knowledge of the underlying molecular
causes of disease. Students will be trained in genetic, molecular biological, and biochemical techniques,
helping to prepare a new generation of biomedical researchers.
抽象的
翻译是细胞将基因转化为蛋白质的整个过程中的关键步骤,而翻译中的缺陷
翻译与许多人类疾病有关。翻译的一个关键组成部分是转移RNA (tRNA),
必须经过多种细胞酶的广泛化学修饰才能正常发挥作用。许多
这些酶及其形成的 tRNA 修饰在真核生物中是保守的,包括
将单细胞芽殖酵母转化为多细胞生物(例如人类),从而使酵母成为强大的模型
研究 tRNA 修饰作用的生物体。重要的是,tRNA 修饰缺陷会导致
智力障碍 (ID) 等多种神经系统疾病与许多其他疾病有关。这
NIH R15 AREA 提案旨在通过以下方式让本科生接触现代生物医学研究
通过三种方式推进 tRNA 修饰研究领域。首先,我们建议研究酵母 Trm732,
与甲基转移酶 Trm7 结合的蛋白质,在第 32 位形成高度保守的修饰
位于 tRNA 的关键反密码子环 (ACL) 区域。此外,我们将研究酵母Trm734,它
还与 Trm7 结合,在 ACL 中的 tRNA 位置 34 处形成保守修饰。这些方面的缺陷
人类 TRM7(称为 FTSJ1)突变引起的修饰会导致 ID。此外,人类TRM732
(THADA) 与 2 型糖尿病、肥胖和多囊卵巢综合征有关,而人类 TRM734 (WDR6)
也与人类健康有联系。因此,在提案的目标 1 中,学生将进行生化实验
确定 Trm732 和 Trm734 在 Trm7 修饰 tRNA 中的作用。在我们的上一轮融资中,
学生们鉴定出缺乏 tRNA 修饰活性的 Trm732 和 Trm734 变异蛋白,这将是
了解每种蛋白质在 tRNA 修饰中如何发挥作用的宝贵工具。其次,虽然
先前已研究过 32 和 34 处这些修饰的累积作用,但人们对这些修饰知之甚少。
每个修改本身的单独作用。因此,在目标 2 中,我们建议确定每个修改如何
单独影响酵母以及培养的人类和果蝇细胞中的翻译。第三,我们建议
鉴定形成酵母中未发现的人类 tRNA ACL 修饰所需的基因,并研究其在
翻译。在目标 3 中,我们将完成鉴定对 39 位进行修饰的酶的工作。
某些人类、动物和植物 tRNA。学生将继续测试候选基因的修饰
使用我们之前开发的方法来识别其他 tRNA 修饰基因的活性。一旦
基因被识别后,我们将使用报告基因检测来确定这种修饰在翻译中的作用。这
本文提出的研究符合 NIH R15 AREA 奖的标准,因为它为本科生提供了
学生有机会充分参与研究,以增加对潜在分子的了解
疾病的原因。学生将接受遗传、分子生物学和生化技术方面的培训,
帮助培养新一代生物医学研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael P. Guy其他文献
Michael P. Guy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 41.65万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 41.65万 - 项目类别:
Role of myosin 1e in podocyte biology and renal filtration
肌球蛋白 1e 在足细胞生物学和肾滤过中的作用
- 批准号:
10587345 - 财政年份:2023
- 资助金额:
$ 41.65万 - 项目类别:
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
- 批准号:
10589192 - 财政年份:2023
- 资助金额:
$ 41.65万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 41.65万 - 项目类别: