Investigating collective myocardial cell movement during heart tube formation
研究心管形成过程中心肌细胞的集体运动
基本信息
- 批准号:10439340
- 负责人:
- 金额:$ 41.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAffectAnimal ModelAnteriorArchitectureAutomobile DrivingBilateralBiologicalBiomechanicsCardiacCardiac MyocytesCardiovascular systemCell ShapeCell SizeCell physiologyCellsCommunicationCongenital AbnormalityDataDefectDevelopmentDevelopmental BiologyDiseaseEducational process of instructingEndodermEnvironmentEtiologyEventExhibitsFoundationsFutureGenesGeneticGenetic TechniquesGoalsHeartHeart AbnormalitiesHeart DiseasesImageIndividualLaboratoriesLasersLateralLeadLigandsLocationMedialMediatingMesodermMissionMississippiMolecularMorphogenesisMovementMusMutationMyocardialMyocardial dysfunctionMyocardiumOrganOrganogenesisPathogenesisPathway interactionsPatternPlatelet-Derived Growth FactorPlatelet-Derived Growth Factor alpha ReceptorPopulationProcessPropertyPseudopodiaRegulationResearchResolutionRestRheologyRoleSignal TransductionSignaling MoleculeStudentsTechniquesTestingTimeTissuesTrainingTransgenesTubeUniversitiesVertebratesZebrafishbasecardiogenesiscell behaviorcell motilitycitizen sciencegenetic analysisgraduate studentin vivoinsightmutantparacrineprogramsresponsesmall molecule inhibitorsource localizationundergraduate studentuniversity studentviscoelasticity
项目摘要
Project Summary
Organ formation is critically regulated by inter-tissue communication. The architecture of the mature heart
is a result of sequential morphogenetic events, starting with the primitive heart tube, which is the
foundation upon which the rest of the heart is built. The process of building the primitive heart tube starts
with the collective movement of myocardial cells from bilateral locations in the anterior lateral plate
mesoderm to the midline, a process called cardiac fusion which is conserved in all vertebrates. Genetic
analysis has revealed that the adjacent endoderm is critical for these movements. However, the signals
or molecules by which the endoderm communicates to the myocardium remain unknown. Furthermore,
the molecular mechanism by which myocardial cells in vertebrates respond to these signals and
collectively move towards the midline is also poorly understood. To elucidate these mechanisms,
undergraduate and graduate students from the University of Mississippi will take a multi-dimensional
approach examining cardiac fusion at the tissue, molecular, cellular and biomechanical level. We have
found that mutations in the Platelet-derived growth factor receptor alpha (Pdgfra) leads to cardiac fusion
defects in both zebrafish and mice. Myocardial movement appears to occur in response to a localized
source of the PDGF ligand pdgf-aa, which we found is expressed in the endoderm medially adjacent to
pdgfra expression in the myocardium. Furthermore, our preliminary data reveals that disruption of PI3K
signaling in zebrafish also causes cardiac fusion defects. And that myocardial cells exhibit protrusions
and display heterogenous changes in cell shape during cardiac fusion. Together, this data suggests the
hypothesis that paracrine PDGF signals from the endoderm activates Pdgfra-mediated PI3K signaling in
the myocardium to create medial oriented migratory protrusions which create asymmetric biomechanical
tension in the myocardium facilitating medial movement. We will test this hypothesis by using tissue-
specific genetic techniques to determine the tissues in which pdgfra and pdgf-aa function (Aim 1) as well
as determine whether PI3K signaling and migratory protrusions are activated downstream of Pdgfra
(Aim2). Additionally, we will use micro-rheology and micro-laser ablation in combination with pdgfra
mutants to examine the biomechanical properties in the myocardium controlled by PDGF signaling (Aim
3). In summary, these studies are likely to elucidate the molecular mechanisms that underlie how
myocardial cells sense and respond to their local environment and in the long-term identify the
fundamental principles that underlie cardiac morphogenesis in both development and disease.
Furthermore, this proposal will help to establish a research program that intertwines student research
opportunities with the discovery of fundamental molecular mechanisms underlying inter-tissue
communication during organ morphogenesis.
项目摘要
器官形成受组织间通信的严格调节。成熟心的建筑
是从原始心管开始的顺序形态发生事件的结果,这是
建立其余心脏的基础。构建原始心管开始的过程
随着心肌细胞从前侧板的双侧位置的集体运动
中线中的中胚层,这是一个称为心脏融合的过程,在所有脊椎动物中都是保守的。遗传
分析表明,相邻的内胚层对于这些运动至关重要。但是,信号
或内胚层通信与心肌的分子仍然未知。此外,
脊椎动物中心肌细胞响应这些信号的分子机制和
集体向中线迈进也很少理解。为了阐明这些机制,
密西西比大学的本科生和研究生将获得多维的
在组织,分子,细胞和生物力学水平上检查心脏融合的方法。我们有
发现血小板衍生的生长因子受体α(PDGFRA)中的突变导致心脏融合
斑马鱼和小鼠的缺陷。心肌运动似乎是为了响应局部化而发生
PDGF配体PDGF-AA的来源,我们发现的是在内胚层中表达的
PDGFRA在心肌中的表达。此外,我们的初步数据表明PI3K的破坏
斑马鱼中的信号传导还会导致心脏融合缺陷。并且心肌细胞表现出突出
并在心脏融合过程中显示出细胞形状的异质变化。在一起,这些数据表明
假设来自内胚层的旁分泌PDGF信号激活PDGFRA介导的PI3K信号传导
心肌产生内侧迁移突出,从而产生不对称的生物力学
心肌促进内侧运动的张力。我们将通过使用组织来检验这一假设
确定PDGFRA和PDGF-AA功能(AIM 1)的组织的特定遗传技术
与确定PI3K信号传导和迁移突起是否在PDGFRA下游激活
(AIM2)。此外,我们将使用微侵蚀学和微晶格消融与PDGFRA结合
突变体检查由PDGF信号控制的心肌中的生物力学特性(AIM
3)。总而言之,这些研究可能阐明了分子机制的基础
心肌细胞感知并对其当地环境做出反应,并在长期内确定
基本原理是发育和疾病中心脏形态发生的基础。
此外,该提案将有助于建立一项研究计划,使学生研究交织
发现组织间基本机制的基本机制的机会
器官形态发生过程中的通信。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Eli Bloomekatz其他文献
Joshua Eli Bloomekatz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Eli Bloomekatz', 18)}}的其他基金
The role of glycosylation in cell-state transitions during development and disease
糖基化在发育和疾病过程中细胞状态转变中的作用
- 批准号:
10836831 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Neural activity-based candidate gene identification to link eating disorders and drug addiction
基于神经活动的候选基因识别将饮食失调和药物成瘾联系起来
- 批准号:
10528062 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Sodium channel mutations as a possible cause for primary dysautonomia
钠通道突变可能是原发性自主神经功能障碍的原因
- 批准号:
10586393 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别: