Mechanisms Regulating Cytomegalovirus
巨细胞病毒的调节机制
基本信息
- 批准号:10481050
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAffectAntiviral AgentsBindingBiological AssayCell LineCell modelChIP-seqChromatinChromatin StructureCollaborationsComplexCongenital AbnormalityCost SavingsCytomegalovirusCytomegalovirus InfectionsCytomegalovirus VaccinesDNA Polymerase IIDNA SequenceDNA biosynthesisDataDiseaseDrug resistanceEnvironmentFibroblastsGene ExpressionGene Expression RegulationGenesGenetic EngineeringGenetic TranscriptionGenomeGenomic approachGoalsHealthHealth Care CostsHerpesviridaeHourHumanHuman Herpesvirus 4Human Herpesvirus 6Immune systemImpairmentIndividualInfectionInfection preventionInflammationInstitute of Medicine (U.S.)KnowledgeLifeMapsMass Spectrum AnalysisModelingNucleosomesOncogenicOutputPathway interactionsPatternPopulationPredispositionPriceProductivityPromoter RegionsProtein IsoformsRegulationResearchResolutionRoleSignal TransductionSiteSystemTaxesTechniquesTechnologyTestingTherapeuticTherapeutic InterventionToxic effectTranscriptTranscription InitiationVeteransViralViral Drug ResistanceVirusVirus ActivationVirus Diseasesbioinformatics pipelinecell typedesignfunctional genomicsgammaherpesvirusgenetically modified cellsgenome-widegenomic locushuman diseasehuman modelmembermortality risknew therapeutic targetnovel therapeuticspharmacologicpreventprogramspromotersarcomatooltranscription factorviral DNAvirology
项目摘要
Human cytomegalovirus (HCMV) infects over half of all Veterans and threatens the lives of those with
impaired immune systems. HCMV is the leading infectious cause of birth defects. There is no HCMV
vaccine, and the antiviral drugs have problems with potency, toxicity, and drug-resistance. The long-range
goal of this research is to identify critical points in the viral transcription-DNA replication cycle that would
serve as new targets for therapeutic intervention. This proposal is based on the premise that our gap in
knowledge of how viral early transcription produces viral DNA replication and how viral DNA replication
results in viral late transcription limits our ability to design new therapeutic treatments for the viral disease.
By customizing advanced technologies and developing new tools, we have used integrated functional
genomics (dTag system, PRO-Seq, ChIP-Seq, genetically engineered test viruses, and promoter function
assays) to determine where and when Pol II initiates transcription, identify sites of viral transcription factor
binding genome-wide, and quantify change in Pol II nascent transcripts from individual promoters in relation
to core promoter sequences, transcription factor loss, stage of infection, and viral DNA replication. We find
that there are three distinct pathways to viral late transcription. Two of these pathways involve the HCMV
IE2 and late transcription factor (LTF) group members. The individual role of each of the 3 different IE2
isoforms (IE2-86, IE2-60, and IE2-40) in viral late transcription is unknown. The six-member set of LTFs
bind to Pol II and a DNA sequence signature in gene promoters, forming a preinitiation complex (PIC) that
drives transcription. Diversity in sequence signature pattern likely determines the amount of individual
promoter output. It is unknown precisely when and how the LTF complex assembles on viral promoters and
how the LTF assembly engages Pol II in transcription. Our use of a new high-resolution ChIP-Seq technique
and bioinformatics pipeline to map genomic locations of nucleosomes, as well as IE2 and LTF PICs,
suggests that LTF PICs occupy genome regions not occupied by nucleosomes. This new ChIP-Seq
technique will strengthen our integrated functional genomics approach to further determining the
mechanisms controlling viral promoter transcription in relation to chromatin structure. Our preliminary data
indicate that: 1) the early-late transcription switch lags many hours behind the onset of viral DNA replication;
2) the HCMV promoter population members that are active differs by cell type and condition, and this
difference may involve IE2 and LTF functions; and 3) the HCMV promoter population that is active during
viral reactivation in the NT2 model differs from that in acute productive infection. We will test the hypothesis
that HCMV transcription factors usurp host Pol II that navigates a modified chromatin environment suited to
bring about viral late transcription (Aims 1 and 2) and to coordinate the viral transcription program in diverse
cell types (Aim 2) and under cellular conditions supporting quiescent and reactivation infections in the NT2
model (Aim 3). We will apply a multifaceted approach to each of the specific aims to: 1) elucidate the
regulators of the early-late transcription switch, 2) determine the mechanistic basis for cell type differences
in viral transcription, and 3) determine how activation of quiescent infection changes viral transcription. Our
proposal integrates the expertise of the Meier and the Price labs in virology and transcription, respectively.
We will build on this productive collaboration to complete the proposed research plan. The discoveries
coming from these studies will identify generalizable features of gene regulation that pertain to other
members of beta- and gammaherpesvirus subfamilies, which include human herpesvirus 6 and the
oncogenic herpesviruses, Epstein-Barr Virus and Kaposis sarcoma-associated herpesvirus.
人类巨细胞病毒(HCMV)感染了所有退伍军人的一半以上,并威胁
免疫系统受损。 HCMV是出生缺陷的主要传染病。没有HCMV
疫苗和抗病毒药物在效力,毒性和抗药性方面存在问题。远程
这项研究的目标是确定病毒转录DNA复制周期中的关键点
作为治疗干预的新目标。该提议基于我们在
了解病毒早期转录如何产生病毒DNA复制以及病毒DNA复制的知识
导致病毒晚期转录限制了我们为病毒疾病设计新的治疗治疗的能力。
通过自定义高级技术并开发新工具,我们使用了集成的功能
基因组学(DTAG系统,Pro-Seq,Chip-Seq,基因工程测试病毒和启动子功能
测定)要确定Pol II启动转录的何时何地,请识别病毒转录因子的位点
结合基因组的结合,并量化单个启动子的Pol II新生转录本的变化
核心启动子序列,转录因子丢失,感染阶段和病毒DNA复制。我们发现
有三种不同的病毒晚期转录途径。这些途径中的两个涉及HCMV
IE2和晚期转录因子(LTF)组成员。三种不同的IE2中的每个人的个体角色
病毒后期转录中的同工型(IE2-86,IE2-60和IE2-40)尚不清楚。由六人组成的LTF
在基因启动子中与POL II和DNA序列签名结合,形成了一种预上络合物(PIC),该复合物
驱动转录。序列签名模式的多样性可能决定了个体的数量
启动子输出。 LTF复合物在病毒启动子和
LTF组件如何使Pol II参与转录。我们使用新的高分辨率芯片序列技术
以及生物信息学管道以绘制核小体的基因组位置以及IE2和LTF图片
表明LTF图片占据了不占核小体占据的基因组区域。这个新的chip-seq
技术将加强我们综合的功能基因组学方法,以进一步确定
控制病毒启动子转录的机制与染色质结构有关。我们的初步数据
表明:1)早期转录开关落后于病毒DNA复制发作的许多小时;
2)主动构件因细胞类型和状况而不同,这
差异可能涉及IE2和LTF功能; 3)在
NT2模型中的病毒重新激活与急性生产感染中的病毒重新激活不同。我们将检验假设
HCMV转录因子篡夺了宿主POL II,该因子导航适合于
带来病毒较晚的转录(目标1和2),并以多种方式协调病毒转录程序
细胞类型(AIM 2)和在细胞条件下支持NT2中的静止和重新激活感染
模型(AIM 3)。我们将对每个特定目的采用多方面的方法来:1)阐明
早期转录开关的调节器,2)确定细胞类型差异的机械基础
在病毒转录中,3)确定静脉感染的激活如何改变病毒转录。我们的
提案分别集成了Meier的专业知识和病毒学和转录中的价格实验室。
我们将基于这一富有成效的合作来完成拟议的研究计划。发现
来自这些研究将确定基因调节的可概括特征,与其他有关
β-和伽马梅氏菌病毒亚家族的成员,包括人类疱疹病毒6和
致癌性疱疹病毒,爱泼斯坦 - 巴尔病毒和卡普病肉瘤相关的疱疹病毒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFERY L MEIER其他文献
JEFFERY L MEIER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFERY L MEIER', 18)}}的其他基金
ACTG A5201 ATAZANAVIR/RITONAVIR AFTER SUSTAINED VIROLOGIC SUPPRESSION
ACTG A5201 持续病毒学抑制后的阿扎那韦/利托那韦
- 批准号:
7604851 - 财政年份:2007
- 资助金额:
-- - 项目类别:
ACTG A5211 HIV-1 ENTRY INHIBITOR, SCH 417690, TO TREAT HIV INFECTED SUBJECTS
ACTG A5211 HIV-1 进入抑制剂,SCH 417690,用于治疗 HIV 感染者
- 批准号:
7604836 - 财政年份:2007
- 资助金额:
-- - 项目类别:
ACTG A5001 - AIDS LONGITUDINAL LINKED RANDOMIZED TRIALS
ACTG A5001 - 艾滋病纵向连锁随机试验
- 批准号:
7604800 - 财政年份:2007
- 资助金额:
-- - 项目类别:
ACTG A5202 & ACTG A5224S EMTRICITABINE/TENOFOVIR OR ABACAVIR/LAMIVUDINE FOR HIV
ACTG A5202
- 批准号:
7604863 - 财政年份:2007
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Rapid measurement of novel harm reduction housing on HIV risk, treatment uptake, drug use and supply
快速测量新型减害住房对艾滋病毒风险、治疗接受情况、毒品使用和供应的影响
- 批准号:
10701309 - 财政年份:2023
- 资助金额:
-- - 项目类别: