A Translational Determination of the Mechanisms of Maladaptive Choice in Opioid Use Disorder
阿片类药物使用障碍适应不良选择机制的转化测定
基本信息
- 批准号:10357944
- 负责人:
- 金额:$ 62.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AbateAbstinenceAddressAnimalsAreaBackBehavioralBehavioral MechanismsBrain DiseasesBrain regionChoice BehaviorChronicClinicalCognitionComputer ModelsCuesDecision MakingDiseaseDrug usageEnvironmentFDA approvedFibrinogenFoodFoundationsFunctional Magnetic Resonance ImagingFutureHalf-LifeHumanImpairmentIndividualIntravenousKnowledgeLearningMental disordersMethodsModelingNeurobiologyNeurologicNeurosciencesOpioidOpioid agonistOutcomeOxycodonePerformancePharmaceutical PreparationsPostdoctoral FellowPreventionPrevention strategyProbabilityProceduresProcessPsychological reinforcementRattusResearchResearch DesignSafetyScheduleSelf AdministrationSignal TransductionTask PerformancesTechniquesTimeTranslatingTranslationsUpdateWithdrawalbaseexperienceexperimental studyhuman subjectinnovationneuroadaptationneurobehavioralneuroimagingneuromechanismnon-drugnovelopioid exposureopioid useopioid use disorderopioid useropioid withdrawalparticipant safetyreinforcerrelating to nervous systemremifentaniltheoriestherapy developmenttranslational studytreatment strategy
项目摘要
ABSTRACT
Opioid use disorder (OUD) is characterized by the decision to use opioids at the expense of other activities.
Lab-based efforts to address this problem have therefore included opioid choice self-administration procedures
that incorporate a non-drug alternative to model this defining feature. Studies using these procedures have
typically scheduled competing reinforcers so that the probabilities are certain. However, such deterministic
outcomes are not representative of real-world experiences in which the consequences from drug-related choices
are often unpredictable. Importantly, decision-making in a dynamic, uncertain context significantly alters the
value of choice options and requires continuous updating of option values, which engages learning processes
and related corticostriatal networks that function abnormally in OUD. Decision-making in dynamic environments
has been successfully modeled using probabilistic reinforcement-learning choice (PRLC) tasks. The integration
of these tasks with reinforcement-learning (RL) computational modeling has been used to capture moment-to-
moment changes in the mechanisms of dynamic choice, and the application of neuroscience techniques has
begun to identify the underlying neurobiology. This approach has uncovered biologically-based decision-making
abnormalities in multiple brain disorders, but has yet to be systematically applied to the experimental study of
OUD, The translation of combined RL and neuroscience approaches to OUD is logical considering the
maladaptive choice behavior that typifies the disorder, the varying reinforcement probabilities in opioid users’
natural environments, and the learning impairments that have been documented in individuals with OUD. Thus,
there are critical gaps in our understanding of the mechanisms underlying dynamic opioid use decisions, and a
strong scientific premise for applying an RL framework to fill these gaps. This project proposes rigorous PRLC
tasks, RL modeling, neurorecording/fMRI neuroimaging techniques and complementary, translational study
designs in rats and humans. The first set of cross-species experiments will demonstrate the impact of opioid
exposure and withdrawal on dynamic decision-making and reveal the neurobehavioral and neurobiological
processes underlying abnormal task performance. The second set of experiments will use a PRLC task in which
intravenous remifentanil, a prototypical opioid agonist with a favorable safety profile, is available as an alternative
to a non-drug reinforcer to determine the behavioral and neural “profiles” associated with drug choice, as well as
the increases and decreases in drug choice that occur during withdrawal and in the presence of a large
magnitude alternative reinforcer, respectively. This project will have a significant impact on the field by
establishing the experimental application of reinforcement-learning theory to the study of maladaptive dynamic
drug-use decision-making in OUD to reveal behavioral and neural mechanisms that can be targeted for future
prevention and treatment development.
抽象的
阿片类药物使用障碍(OUD)的特征是决定使用阿片类药物以其他活动为代价。
因此,基于实验室的范围可以解决添加问题,因此包括阿片类药物选择自我管理程序
这结合了对此定义功能建模的非药水替代方案。
通常是计划的竞争增强剂,因此概率是确定的。
结果并不代表现实世界的经验,在这种经验中,与药物相关选择的后果
通常是不可预测的。
选择选项的价值,并且需要连续更新选项值,以吸引学习过程
以及在OUD中异常起作用的相关皮质纹状体网络。
已通过概率加强学习选择(PRLC)任务成功建模
在使用加强学习(RL)计算建模的这些任务中
动态选择机制的力矩变化,神经科学技术的应用具有
开始识别潜在的神经生物学。
多种脑部疾病异常,但尚未将其系统地应用于
oud,组合的RL和神经科学方法的翻译是逻辑上的
适应不良的选择行为,代表该疾病
因此,自然环境和学习障碍已记录在OUD中。
我们对动态阿片类药物使用决策机制的理解存在关键差距,
使用RL框架来填补这些差距的强大科学前提。
任务,RL建模,神经记录/FMRI神经影像学技术和压缩,转化研究
大鼠和人类的设计。
在动态决策中暴露和退出,并揭示神经虫和神经生物学
过程的基础异常任务绩效。
静脉注射雷曲霉,一种具有良好安全性的原型阿片类动力学家,可作为替代品可用
到非药物增强剂来确定与药物选择相关的行为和神经“特征”,以及
戒断期间发生的药物选择的增加和减少
该项目分别对该项目产生重大影响。
建立强化学习理论的实验应用应用于不良适应性动态的研究
毒品使用的决策在上面陶醉于行为和神经杂音,可以将来转向未来
预防和治疗发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Beckmann其他文献
Joshua Beckmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Beckmann', 18)}}的其他基金
A Translational Determination of the Mechanisms of Maladaptive Choice in Opioid Use Disorder
阿片类药物使用障碍适应不良选择机制的转化测定
- 批准号:
9913503 - 财政年份:2019
- 资助金额:
$ 62.51万 - 项目类别:
A Translational Determination of the Mechanisms of Maladaptive Choice in Opioid Use Disorder
阿片类药物使用障碍适应不良选择机制的转化测定
- 批准号:
10565857 - 财政年份:2019
- 资助金额:
$ 62.51万 - 项目类别:
A translational determination of the mechanisms of maladaptive choice in cocaine use disorder
可卡因使用障碍适应不良选择机制的转化测定
- 批准号:
10398833 - 财政年份:2018
- 资助金额:
$ 62.51万 - 项目类别:
A translational determination of the mechanisms of maladaptive choice in cocaine use disorder
可卡因使用障碍适应不良选择机制的转化测定
- 批准号:
9922897 - 财政年份:2018
- 资助金额:
$ 62.51万 - 项目类别:
Tonic and Phasic Glutamate Release in Incentive Salience and Cocaine Reinforcemen
激励显着性和可卡因强化剂中的补品和阶段性谷氨酸释放
- 批准号:
8898930 - 财政年份:2014
- 资助金额:
$ 62.51万 - 项目类别:
Tonic and Phasic Glutamate Release in Incentive Salience and Cocaine Reinforcemen
激励显着性和可卡因强化剂中的补品和阶段性谷氨酸释放
- 批准号:
9131675 - 财政年份:2014
- 资助金额:
$ 62.51万 - 项目类别:
Tonic and Phasic Glutamate Release in Incentive Salience and Cocaine Reinforcemen
激励显着性和可卡因强化剂中的补品和阶段性谷氨酸释放
- 批准号:
8457019 - 财政年份:2012
- 资助金额:
$ 62.51万 - 项目类别:
Tonic and Phasic Glutamate Release in Incentive Salience and Cocaine Reinforcemen
激励显着性和可卡因强化剂中的补品和阶段性谷氨酸释放
- 批准号:
8281092 - 财政年份:2012
- 资助金额:
$ 62.51万 - 项目类别:
相似国自然基金
趋化因子CXCL14在胚胎植入中的作用及机制研究
- 批准号:30670785
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
人工泵式括约肌对去肛门括约肌犬节制排便的实验研究
- 批准号:39670706
- 批准年份:1996
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
A Translational Determination of the Mechanisms of Maladaptive Choice in Opioid Use Disorder
阿片类药物使用障碍适应不良选择机制的转化测定
- 批准号:
9913503 - 财政年份:2019
- 资助金额:
$ 62.51万 - 项目类别:
A Translational Determination of the Mechanisms of Maladaptive Choice in Opioid Use Disorder
阿片类药物使用障碍适应不良选择机制的转化测定
- 批准号:
10565857 - 财政年份:2019
- 资助金额:
$ 62.51万 - 项目类别:
Intervention for Teens with ADHD and Substance Use
对患有多动症和药物滥用的青少年进行干预
- 批准号:
8631364 - 财政年份:2014
- 资助金额:
$ 62.51万 - 项目类别:
The Efficacy of CBT-I in Alcoholics & Its Effects on Remission & Relapse
CBT-I 对酗酒者的功效
- 批准号:
8634474 - 财政年份:2014
- 资助金额:
$ 62.51万 - 项目类别:
The Efficacy of CBT-I in Alcoholics & Its Effects on Remission & Relapse
CBT-I 对酗酒者的功效
- 批准号:
8811012 - 财政年份:2014
- 资助金额:
$ 62.51万 - 项目类别: