Regulation of Drp1-dependent mitochondrial fission during synaptic potentiation
突触增强过程中 Drp1 依赖性线粒体分裂的调节
基本信息
- 批准号:9536140
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdolescentAffectAlzheimer&aposs DiseaseAreaAutistic DisorderBiochemistryBiological AssayBrainCalcineurinCellsChemicalsChemosensitizationComplexConfocal MicroscopyCuriositiesDataDendritesDendritic SpinesDiseaseDominant-Negative MutationDynaminEndoplasmic ReticulumEventExcitatory SynapseFunctional disorderGuanosine Triphosphate PhosphohydrolasesHeritabilityHippocampus (Brain)Huntington DiseaseHydrolysisImpairmentInvestigationKnowledgeLeadLearningLinkLong-Term PotentiationMeasuresMemoryMental DepressionMicroscopyMitochondriaMitochondrial DiseasesMolecularMorphologyNeurodegenerative DisordersNeuronsParkinson DiseasePhospho-Specific AntibodiesPhosphorylationPhysiologyPlayPrevention approachProcessPropertyProtein DephosphorylationProteinsProtocols documentationRegulationResolutionRoleSchizophreniaShapesShort Interspersed Nucleotide ElementsSumSurfaceSynapsesSynaptic TransmissionSynaptic VesiclesSynaptic plasticityTechniquesTestingUrsidae FamilyVertebral columnWestern Blottingautism spectrum disordercell motilitycell typedesignenergy balanceexperimental studyimprovedinsightknock-downmimeticsmitochondrial dysfunctionnervous system disorderneuron developmentneuropsychiatric disordernovel diagnosticsnovel therapeuticsparticlepostsynapticpresynapticpreventrecruitsingle moleculesynaptic functionsynaptogenesis
项目摘要
Healthy synapse function relies on the adequate presence of mitochondria. The heightened energy utilization
of activity-dependent processes supporting long-term potentiation (LTP) places even greater a demand on
mitochondria and, indeed, mitochondrial dysfunction is implicated in many neuropsychiatric disorders including
autism and schizophrenia. Although the mechanisms that support dendritic mitochondrial reorganization are
unclear, a key process impacting mitochondrial distribution is mitochondrial fission. Thus, two central questions
that remain are whether LTP induction impacts mitochondrial fission, and whether mitochondrial fission is
required for LTP. Mitochondrial fission is regulated by a GTPase, dynamin-related protein 1 (Drp1), which itself
is tightly regulated by phosphorylation. Intriguingly, CaMK1α and calcineurin, both required for LTP induction,
also increase Drp1 recruitment to mitochondria and mitochondrial fission by regulating Drp1 phosphorylation.
Yet, despite these indications, the link between LTP and mitochondrial fission remains unknown. Driven by this
curiosity, I used a protocol to chemically induce LTP (chemLTP) to test whether LTP induction increases
mitochondrial fission. My preliminary data show a rapid and transient burst of mitochondrial fission after
chemLTP stimulation, in addition to robust and sustained canonical changes to dendritic spine morphology.
Together, these observations lead me to hypothesize that LTP requires an increase in dendritic mitochondrial
fission via direct regulation of Drp1 function. I will use a diverse arsenal of confocal and super-resolution
microscopy, molecular perturbations, and biochemistry techniques to determine the relationship between LTP,
Drp1 function, and mitochondrial fission by addressing three specific aims. First, I will determine whether LTP
requires an increase in dendritic mitochondrial fission. I will confirm and extend my preliminary findings by
testing whether the fission increase is NMDAR-dependent by blocking NDMARs. To test whether induction of
LTP requires fission, I will block fission by expressing a Drp1 dominant negative mutant, and will measure
properties of dendritic spines, synapses, and mitochondrial fission after chemLTP stimulation. Second, I will
determine whether chemLTP stimulation changes recruitment or mobility of Drp1 oligomers on mitochondria
using confocal microscopy particle tracking. My preliminary data suggest that Drp1 puncta become drastically
less mobile prior to inducing fission and I will measure the effect of chemLTP stimulation on this mobility. To
measure whether mobility of isolated Drp1 molecules on mitochondria is altered during LTP, I will use single
molecule tracking photoactivated localization microscopy (sptPALM). Third, I will determine whether LTP
induction requires phosphorylation of Drp1 via Western blots with phospho-specific antibodies, and by
measuring fission and dendritic spine properties in the presence of phospho-mimetic and phospho-null Drp1
constructs. In sum, these Aims will greatly extend our understanding of mitochondrial fission in neurons, and
will elucidate the unexplored relationship between mitochondrial fission and synaptic potentiation.
健康的突触功能取决于线粒体的足够存在。能源利用率提高
支持长期增强(LTP)的活动依赖性过程的要求更大
线粒体以及线粒体功能障碍在许多神经精神疾病中隐含
自闭症和精神分裂症。尽管支持树突状重组的机制是
尚不清楚,影响线粒体分布的关键过程是线粒体裂变。那是两个中心问题
仍然存在LTP诱导是否会影响线粒体裂变,以及线粒体裂变是否为
LTP所需。线粒体裂变由GTPase,Dynamin相关蛋白1(DRP1)调节,该蛋白本身本身
受磷酸化严格调节。有趣的是,LTP诱导所必需的CAMK1α和钙调神经酶,
还通过调节DRP1磷酸化来增加DRP1募集到线粒体和线粒体裂变。
然而,dospite这些适应症,LTP与线粒体裂变之间的联系仍然未知。由此驱动
好奇心,我使用一项方案来化学诱导LTP(ChemLTP)来测试LTP诱导是否增加
线粒体裂变。我的初步数据表明,线粒体裂变的快速瞬时爆发
除了对树突状脊柱形态的强大和持续的规范变化外,ChemLTP模拟。
总之,这些观察结果使我假设LTP需要增加树突状线粒体
通过直接调节DRP1函数进行裂变。我将使用共聚焦和超分辨率的不同武器库
显微镜,分子扰动和生物化学技术,以确定LTP之间的关系
DRP1功能和线粒体裂变通过解决三个特定目的。首先,我将确定LTP是否
需要树突状线粒体裂变的增加。我将通过
测试裂变增加是否通过阻止NDMAR的NMDAR依赖。测试是否诱导
LTP需要裂变,我将通过表达DRP1显性负突变体来阻止裂变,并将测量
ChemLTP刺激后树突状刺,突触和线粒体裂变的特性。第二,我会的
确定ChemLTP刺激是否会改变DRP1低聚物在线粒体上的募集或迁移率
使用共聚焦显微镜粒子跟踪。我的初步数据表明DRP1 Puncta变得急剧
诱导裂变之前的移动性较低,我将衡量ChemLTP模拟对这种迁移率的影响。到
测量LTP期间线粒体上孤立的DRP1分子的迁移率是否改变,我将使用单个
分子跟踪光活化定位显微镜(SPTPALM)。第三,我将确定LTP是否
诱导需要通过具有磷酸特异性抗体的蛋白质印迹将DRP1磷酸化,并通过
在存在磷酸化和磷酸化drp1的情况下测量裂变和树突状脊柱特性
构造。总而言之,这些目标将极大地扩展我们对神经元中线粒体裂变的理解,以及
将阐明线粒体裂变与突触电位之间的意外关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sai Sachin Divakaruni其他文献
Sai Sachin Divakaruni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sai Sachin Divakaruni', 18)}}的其他基金
Regulation of Drp1-dependent mitochondrial fission during synaptic potentiation
突触增强过程中 Drp1 依赖性线粒体分裂的调节
- 批准号:
9753351 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Regulation of Drp1-dependent mitochondrial fission during synaptic potentiation
突触增强过程中 Drp1 依赖性线粒体分裂的调节
- 批准号:
9192270 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Microglia-neuron interactions Roles for microglial Iba1
小胶质细胞-神经元相互作用 小胶质细胞 Iba1 的作用
- 批准号:
10157121 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Connecting transcriptional control to mechanisms of morphogenesis
将转录控制与形态发生机制联系起来
- 批准号:
10398905 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Microglia-neuron interactions Roles for microglial Iba1
小胶质细胞-神经元相互作用 小胶质细胞 Iba1 的作用
- 批准号:
10310518 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Regulation of Drp1-dependent mitochondrial fission during synaptic potentiation
突触增强过程中 Drp1 依赖性线粒体分裂的调节
- 批准号:
9753351 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Regulation of Drp1-dependent mitochondrial fission during synaptic potentiation
突触增强过程中 Drp1 依赖性线粒体分裂的调节
- 批准号:
9192270 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别: