Superhydrophobic Heart Valve Prosthesis
超疏水人工心脏瓣膜
基本信息
- 批准号:9534731
- 负责人:
- 金额:$ 71.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnticoagulationAreaArtificial HeartBiocompatible MaterialsBiologyBiomechanicsBiomedical EngineeringBioprosthesis deviceBloodBlood PlateletsCardiovascular systemCathetersCellsCessation of lifeCharacteristicsClinicalDevicesEngineeringEnvironmentFreedomGoalsGrantHeart Valve ProsthesisHeart ValvesHemorrhageHumanImageIn VitroIndustryLeadLengthLeukocytesLifeLiquid substanceMechanicsMedicalMethodsMicrofluidicsOperative Surgical ProceduresPatientsPerformancePilot ProjectsPlaguePlatelet ActivationPolymersProceduresResearchResearch PersonnelRiskSaint Jude Children&aposs Research HospitalStentsStressSurfaceSurgeonTechniquesTechnologyTestingThoracic SurgeonThromboembolismThrombusTissuesTrainingWhole BloodWorkbasebiomaterial compatibilitycalcificationcontrol theoryexperienceexperimental studyhemodynamicsimmunogenicimplantationimprovedin vivoin vivo Modelin vivo evaluationindexinginnovationleft ventricular assist devicemacrophagematerials sciencememberminimally invasivemonocytenanoengineeringnanoscalenovelpericardial sacpyrolytic carbonresponseshear stressvalve replacement
项目摘要
Project Summary:
All present day prosthetic heart valves suffer from complications. Mechanical heart valves (HVs) require life-long
anti-coagulation therapy, while bioprosthetic heart valves based on fixed tissue are plagued with durability,
immunogenic and calcification issues. Superhydrophobic (SH) bileaflet mechanical heart valves with vortex
generator (VG) technology promise to eliminate the need for anti-coagulation therapy. Our lab has developed a
SH bileaflet mechanical heart valve (BMHV) with VGs that drastically improve surface hemocompatibility as well
as eliminate turbulent stresses, thus reducing platelet activation. Preliminary work has shown that SH surfaces
remarkably reduced thrombogenic potential relative to plain pyrolytic carbon leaflets. Further, we have already
demonstrated the feasibility of manufacturing BMHVs and assembling them with VGs into an implantable BMHV.
The present R01 study aims to gauge the efficacy of SH BMHV with VG as a potential alternative to current heart
valve technology by fine tuning material composition and processing to meet the durability and antithrombogenic
requirements for heart valves. Our central hypothesis is: superhydrophobic BMHVs with vortex generator flow
control technology will require significantly less anti-coagulation therapy. This is tested in three aims. Aim 1
focuses on elucidating the effects of leaflet composition and processing on hemocompatibility while optimizing
the strength and hemocompatibility of the coating. Aim 2 quantifies heart valve hemodynamic performance of SH
with VG BMHVs to identify the ideal SH+VG configuration for superior hemodynamics and minimum blood
damage. Aim 3 focuses on understanding the in vivo hemocompatibility of SH with VG BMHV in a pilot ovine
study. This proposal is led by Dr. Lakshmi Prasad Dasi, who is a well trained young investigator with expertise in
heart valve engineering and cardiovascular biomechanics, and inventor of several heart valve technologies
including VGs and novel biomolecule polymer leaflets. Multi-PIs are Dr. Kota, who is an established
superhydrophobic materials expert; Dr. Popat whose expertise lies in bio-compatibility and surface
nano-engineering. Co-Is include Dr. Brueur, Dr. Bark, Dr. Crestanello, Dr. Shinoka, and Dr. Hor who form an
experienced team with expertise in in-vivo models, platelet biology, surgery, and imaging. If the proposed work
demonstrates that SH with VG BMHVs do not require anti-coagulation, elicit excellent hemodynamics, and are
durable, this R01 grant may lead to breakthrough technology for mechanical HVs that require little or no
anticoagulation.
项目概要:
目前所有的人工心脏瓣膜都存在并发症。机械心脏瓣膜 (HV) 需要终生使用
抗凝治疗,而基于固定组织的生物假体心脏瓣膜则存在耐久性问题,
免疫原性和钙化问题。带涡流的超疏水 (SH) 双叶机械心脏瓣膜
发电机(VG)技术有望消除抗凝治疗的需要。我们实验室开发了一个
带 VG 的 SH 双叶机械心脏瓣膜 (BMHV) 也可显着改善表面血液相容性
消除湍流应力,从而减少血小板活化。初步工作表明SH表面
与普通热解碳小叶相比,显着降低了血栓形成的可能性。此外,我们已经
展示了制造 BMHV 并将其与 VG 组装成植入式 BMHV 的可行性。
目前的 R01 研究旨在评估 SH BMHV 与 VG 作为当前心脏的潜在替代品的功效
阀门技术通过微调材料成分和加工来满足耐用性和抗血栓形成的要求
对心脏瓣膜的要求。我们的中心假设是:带有涡流发生器的超疏水 BMHV
控制技术将需要显着减少的抗凝治疗。这是在三个目标上进行测试的。目标1
重点是阐明传单成分和加工对血液相容性的影响,同时进行优化
涂层的强度和血液相容性。目标 2 量化 SH 的心脏瓣膜血流动力学性能
与 VG BMHV 一起确定理想的 SH+VG 配置,以实现卓越的血流动力学和最少的血液
损害。目标 3 侧重于了解 SH 与 VG BMHV 在试验羊体内的血液相容性
学习。该提案由 Lakshmi Prasad Dasi 博士领导,他是一位训练有素的年轻研究员,在以下领域拥有专业知识:
心脏瓣膜工程和心血管生物力学,以及多项心脏瓣膜技术的发明者
包括 VG 和新型生物分子聚合物小叶。多位 PI 是 Kota 博士,他是一位知名人士
超疏水材料专家; Popat 博士的专长在于生物相容性和表面
纳米工程。 Co-Is 包括 Brueur 博士、Bark 博士、Crestanello 博士、Shinoka 博士和 Hor 博士,他们组成了一个
经验丰富的团队在体内模型、血小板生物学、手术和成像方面拥有专业知识。如果建议的工作
表明带有 VG BMHV 的 SH 不需要抗凝,可产生出色的血流动力学,并且
耐用,这项 R01 资助可能会带来机械 HV 的突破性技术,这些技术几乎不需要或不需要
抗凝。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lakshmi Prasad Dasi其他文献
Quantifying left ventricular trabeculae function – application of image-based fractal analysis
量化左心室小梁功能——基于图像的分形分析的应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Brandon L. Moore;Lakshmi Prasad Dasi - 通讯作者:
Lakshmi Prasad Dasi
Atrial and ventricular flows across a transcatheter mitral valve.
心房和心室流经经导管二尖瓣。
- DOI:
10.1093/icvts/ivab032 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
H. Hatoum;Gunnar Askegaard;Ramji Iyer;Lakshmi Prasad Dasi - 通讯作者:
Lakshmi Prasad Dasi
Lakshmi Prasad Dasi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lakshmi Prasad Dasi', 18)}}的其他基金
Maglev LVAD with expandable stented inlet and anti-thrombotic coating to improve hemocompatibility
磁悬浮 LVAD 具有可扩张支架入口和抗血栓涂层,可改善血液相容性
- 批准号:
10736998 - 财政年份:2023
- 资助金额:
$ 71.9万 - 项目类别:
CBT@EmTech - CardioVascular Biomechanics Training Program at Emory and GaTech
CBT@EmTech - 埃默里大学和 GaTech 的心血管生物力学培训计划
- 批准号:
10714694 - 财政年份:2023
- 资助金额:
$ 71.9万 - 项目类别:
Superomniphobic flow controlled prosthetic heart valve
超全疏流控制人工心脏瓣膜
- 批准号:
10127145 - 财政年份:2017
- 资助金额:
$ 71.9万 - 项目类别:
Hyaluronan enhanced polymeric heart valve prosthesis
透明质酸增强型聚合物人工心脏瓣膜
- 批准号:
9251521 - 财政年份:2016
- 资助金额:
$ 71.9万 - 项目类别:
Cost Effective Trileaflet BioPolymeric Heart Valve For India
印度具有成本效益的三叶生物聚合心脏瓣膜
- 批准号:
9147571 - 财政年份:2015
- 资助金额:
$ 71.9万 - 项目类别:
Cost Effective Trileaflet BioPolymeric Heart Valve For India
印度具有成本效益的三叶生物聚合心脏瓣膜
- 批准号:
8607819 - 财政年份:2015
- 资助金额:
$ 71.9万 - 项目类别:
相似国自然基金
硫酸皮肤素寡糖靶向HCII抗凝的特征序列及其抗缺血性卒中机制研究
- 批准号:32301074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
口服抗凝药物个体化治疗的新策略:基于可解释性集成学习模型的预测研究
- 批准号:82370512
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
红细胞对蛋白C通路抗凝效果的影响及其机制研究
- 批准号:82370137
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于两性离子聚合物刷的介入导管长效抗凝润滑涂层研究
- 批准号:52375191
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于脓毒症炎症反应调控的自抗凝循环组蛋白吸附剂的构建及机理研究
- 批准号:82300848
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Circadian Rhythm as a Therapeutic Target for Perioperative Cardioprotection
昼夜节律作为围手术期心脏保护的治疗目标
- 批准号:
10659089 - 财政年份:2023
- 资助金额:
$ 71.9万 - 项目类别:
Validation of a pediatric thrombosis risk assessment model and characterization of bleeding in hospitalized children through the Children's Hospital Acquired Thrombosis (CHAT) Consortium
通过儿童医院获得性血栓 (CHAT) 联盟验证儿科血栓风险评估模型和住院儿童出血特征
- 批准号:
10426594 - 财政年份:2022
- 资助金额:
$ 71.9万 - 项目类别:
Mentoring in patient-oriented research in social determinants and atrial fibrillation
指导以患者为中心的社会决定因素和心房颤动研究
- 批准号:
10687127 - 财政年份:2022
- 资助金额:
$ 71.9万 - 项目类别:
Mentoring in patient-oriented research in social determinants and atrial fibrillation
指导以患者为中心的社会决定因素和心房颤动研究
- 批准号:
10523302 - 财政年份:2022
- 资助金额:
$ 71.9万 - 项目类别:
Novel Pathways and Therapeutic Targets for Cisplatin-Associated Acute Kidney Injury
顺铂相关急性肾损伤的新途径和治疗靶点
- 批准号:
10868783 - 财政年份:2022
- 资助金额:
$ 71.9万 - 项目类别: