Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
基本信息
- 批准号:9541945
- 负责人:
- 金额:$ 6.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActive SitesAffectAllelesBacteremiaBacteriaBioinformaticsCandidate Disease GeneCell DeathCell membraneCellsCellular biologyCorneaCorneal DiseasesCytoplasmDataDevelopmentDiseaseDoctor of PhilosophyElectron MicroscopyElectronsEngineeringEpithelialEpithelial CellsEpitheliumEventEyeFellowshipFibrosisGenesHumanImageImmunocompromised HostImmunofluorescence MicroscopyIn VitroIndividualInfectionInjuryInvadedKnock-outLeadLibrariesLifeMediatingMethodsMicrobial BiofilmsMicrotubulesModelingMotorMovementMusMutationNosocomial InfectionsOutcomePathogenesisPatientsPenetrationPhospholipasePilumPlasma CellsPneumoniaPolymerase Chain ReactionPostdoctoral FellowProcessPseudomonas aeruginosaPublicationsPublishingRegulationRoleRouteSecond Messenger SystemsSolidSuggestionSurfaceTestingTheoretical modelTimeTrainingTranscriptUrinary tract infectionVacuoleVariantVirulenceWestern Blottingappendagebacterial geneticscell motilitycorneal epitheliumdepolymerizationdifferential expressionexperimental studyfollow-uphost-microbe interactionsin vivoin vivo Modelinjuredmouse modelmutantnovel strategiespathogenpreventprotein expressiontooltraffickingtranscriptome sequencing
项目摘要
Project Summary
Pseudomonas aeruginosa is among the most common causes of blinding corneal disease, while
also being a major cause of life threating nosocomial infections such as pneumonia, bacteremia,
urinary tract infections (UTIs), and cytstic fibrosis (CF), targeting immunocompromised and
critically injured patients. Publications from the Fleiszig lab have shown that twitching motility, a
type of surface associated movement, contributes to the ability of P. aeruginosa to penetrate
human corneal epithelial cell multilayers in vitro and is critical to pathogenesis of P. aeruginosa
corneal infection in a mouse model in vivo. Key to P. aeruginosa pathogenesis in the cornea is
the capacity of the bacteria to invade corneal epithelial cells. While P. aeruginosa mutants that
lack twitching motility can invade epithelial cells, and replicate inside them just as efficiently as
wildtype bacteria, they have reduced capacity for exiting cells they have entered. During my
postdoctoral fellowship in the Fleiszig lab, I used imaging and various other methods to study the
mechanisms by which P. aeruginosa exits epithelial cells. Importantly, my preliminary data show
that exit does not necessarily follow cell death, suggesting active/deliberate mechanisms
contribute. My data further show that when twitching mutants invade and replicate in corneal
epithelial cells, they differ from wildtype P. aeruginosa in being unable to distribute themselves in
the cytoplasm and instead accumulate in aggregates. I have also screened a mutant library for
exit capacity, and have found that mutants in either of two phospholipases, PlcB or PA2155, are
exit defective. In contrast to twitching mutants, the phospholipase mutants spread normally
throughout the host cell cytoplasm. Thus, my data mechanistically separate the exit process into
two stages one dependent on twitching and the other dependent on phospholipases. My
theoretical model for exit is that P. aeruginosa uses twitching motility to avoid forming a biofilm
aggregate inside the cell and to access the host cell plasma membrane, where they use
phospholipase activity (e.g. of PlcB and PA2155) to alter the plasma membrane to provide an exit
route. Thus, in aim 1 I will the identify the genes transcripts that impact twitching mutant
aggregation and exit compared to wildtype, and in aim 2 I will determine if phospholipases
facilitate exit through their enzymatic activity. While contributing to our understanding of P.
aeruginosa pathogenesis, this project could ultimately contribute to development of strategies for
preventing and treating infections that act by preventing bacterial penetration through our
protective surface epithelia.
项目摘要
铜绿假单胞菌是盲目角膜疾病的最常见原因之一,而
也是威胁性医院感染的主要生命原因,例如肺炎,菌血症,
尿路感染(UTI)和细胞纤维化(CF),靶向免疫功能低下和
严重受伤的患者。 Fleiszig Lab的出版物表明,Twitching Motility,一个
与表面相关运动的类型,有助于铜绿假单胞菌穿透的能力
人角膜上皮细胞多层体外,对于铜绿假单胞菌的发病机理至关重要
小鼠模型中的角膜感染。角膜中铜绿假单胞菌发病机理的关键是
细菌侵入角膜上皮细胞的能力。而铜绿假单胞菌突变体
缺乏抽搐的运动性会侵入上皮细胞,并在其中复制,就像
野生型细菌,它们减少了退出已进入细胞的能力。在我期间
弗莱西格实验室的博士后奖学金,我使用成像和其他各种方法来研究
铜绿假单胞菌退出上皮细胞的机制。重要的是,我的初步数据显示
该出口不一定遵循细胞死亡,表明有主动/故意的机制
贡献。我的数据进一步表明,抽搐突变体入侵并在角膜中复制
上皮细胞,它们与野生型铜绿假单胞菌不同,无法分配自己
细胞质并积聚在聚集体中。我还筛选了一个突变库的
出口容量,发现两种磷脂酶中的两个PLCB或PA2155中的突变体是
退出有缺陷。与抽搐突变体相反,磷脂酶突变体正常扩散
在整个宿主细胞细胞质中。因此,我的数据将出口过程机械地分开
两个阶段一个依赖于抽搐,另一个取决于磷脂酶。我的
出口的理论模型是,铜绿假单胞菌使用抽搐运动避免形成生物膜
在细胞内部聚集并访问宿主细胞质膜,它们在其中使用
磷脂酶活性(例如PLCB和PA2155的)以改变质膜以提供出口
路线。因此,在目标1中,我将确定影响抽搐突变体的基因转录本
与野生型相比,聚集和退出,在AIM 2中,我将确定磷脂酶是否是否
通过其酶活性促进退出。同时为我们的理解做出了贡献。
铜绿发病机理,该项目最终可能有助于制定策略
防止和治疗通过防止细菌穿透我们的感染
保护性表面上皮。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent Nieto其他文献
Vincent Nieto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent Nieto', 18)}}的其他基金
Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
- 批准号:
9918910 - 财政年份:2018
- 资助金额:
$ 6.3万 - 项目类别:
相似海外基金
Targeting durotaxis in lung injury and fibrosis
靶向肺损伤和纤维化中的杜罗轴
- 批准号:
10364927 - 财政年份:2021
- 资助金额:
$ 6.3万 - 项目类别:
Targeting durotaxis in lung injury and fibrosis
靶向肺损伤和纤维化中的杜罗轴
- 批准号:
10532249 - 财政年份:2021
- 资助金额:
$ 6.3万 - 项目类别:
Post translational modifications tune cardiac myosin
翻译后修饰调节心肌肌球蛋白
- 批准号:
10291447 - 财政年份:2021
- 资助金额:
$ 6.3万 - 项目类别:
Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
- 批准号:
9918910 - 财政年份:2018
- 资助金额:
$ 6.3万 - 项目类别:
Nano and Microscale Molecular Machines for Innate Immune Sensing of Candida
用于念珠菌先天免疫传感的纳米和微型分子机器
- 批准号:
8984585 - 财政年份:2015
- 资助金额:
$ 6.3万 - 项目类别: