Laser Speckle Imaging Chip for Telehealth Applications

用于远程医疗应用的激光散斑成像芯片

基本信息

  • 批准号:
    9466379
  • 负责人:
  • 金额:
    $ 74.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT The availability of improved diagnostic tools in the primary care environment capable of diagnosing diseases in their earliest stages could significantly improve disease management. Primary beneficiaries would be the elderly, who are at increased risk for a number of progressively debilitating diseases, but who may face practical cost and convenience hurdles in routinely presenting to specialists for examination. Retinal imaging is increasingly being recognized as a means to monitor not just ophthalmic health, but also as a surrogate indicator of neurological and cardiovascular health. And therefore, there is increasing support for its integration into primary care practice via telehealth approaches. However, current retinal imaging products that meet the cost, size, and use case requirements of the primary care environment have significant limitations in their abilities such as their inadequacy to measure blood flow or other dynamic changes in physiology. To address this shortcoming of current technology and make a clinical impact, Vasoptic has proposed to develop and commercialize a low-cost, portable, noninvasive retinal imaging instrument (the XyCAM) that can complement fundus photographs with retinal blood flow information obtained at high spatio-temporal resolution without the introduction of any dyes. During Phase I studies, we designed and developed a custom image sensing chip with high signal to noise ratio, as needed for the low-light retinal imaging application, and developed a handheld prototype with a robust software suite for image acquisition and analysis. Upon confirming safety against light toxicity, we characterized performance of the XyCAM prototype by conducting proof-of-concept experiments in animal models and proof-of-feasibility studies in human subjects. Our investigation has indicated that the XyCAM prototype can image retinal blood flow with a high spatio- temporal resolution and with high reproducibility. Based on this success and our learnings, we propose a Phase II effort which will include (a) development and validation of robust mechanisms to automatically and objectively assess the vascular status in the retina; and (b) demonstration of preliminary feasibility that the XyCAM can discriminate between normal and diseased retinas through point-of-care assessment of retinal blood flow and associated morphological and physiological metrics. Our Phase II application focuses on two disease conditions that affect the elderly and severely impact their quality of life – Alzheimer’s disease, which is also the sixth leading cause of death in the United States and diabetic retinopathy, which causes as many as 65,000 individuals to experience serious visual impairment every year. While the former could also benefit from research carried out in primary care environments leading to the development of retinal blood flow as a robust biomarker for diagnostics, the latter could benefit from increased patient compliance and early diagnostics as is possible through telehealth methods. If we are successful, this study will enable a 510(k) submission to the US FDA seeking approval to market the validated XyCAM as a general purpose retinal imager and provide us the necessary early feasibility data that justifies multi-center clinical trials to investigate the sensitivity and specificity for various disease diagnostics.
抽象的 在初级保健环境中提供改进的诊断工具,能够诊断其所在地区的疾病 最早阶段可以显着改善疾病管理,主要受益者是老年人。 一些逐渐使人衰弱的疾病的风险增加,但谁可能面临实际成本和便利 常规向专家进行检查的障碍越来越被认为是一种手段。 不仅可以监测眼部健康,还可以作为神经和心血管健康的替代指标。 因此,越来越多的人支持通过远程医疗方法将其纳入初级保健实践。 当前的视网膜成像产品满足初级保健环境的成本、尺寸和用例要求 他们的能力有很大的局限性,例如他们不足以测量血流量或其他动态变化 生理。 为了解决当前技术的这一缺陷并产生临床影响,Vasoptic 提议开发和 将一种低成本、便携式、非侵入性视网膜成像仪器 (XyCAM) 商业化,以补充眼底 在高时空分辨率下获得的具有视网膜血流信息的照片,无需引入 在第一阶段研究期间,我们设计并开发了具有高信噪比的定制图像传感芯片, 根据低光视网膜成像应用的需要,并开发了具有强大软件套件的手持原型 在确认光毒性安全性后,我们对图像采集和分析的性能进行了表征。 通过在动物模型中进行概念验证实验和在人体中进行可行性研究验证来制作 XyCAM 原型 我们的研究表明,XyCAM 原型可以对视网膜血流进行高空间成像。 基于这一成功和我们的经验,我们提出了第二阶段的努力。 其中将包括 (a) 开发和验证强有力的机制,以自动、客观地评估 视网膜血管状态;以及 (b) 证明 XyCAM 可以区分的初步可行性 通过对视网膜血流及相关形态和特征的即时护理评估来识别正常和患病的视网膜 我们的第二阶段应用重点关注影响老年人和严重疾病的两种疾病。 影响他们的生活质量——阿尔茨海默病,这也是美国第六大死因 糖尿病视网膜病变,每年导致多达 65,000 人出现严重的视力障碍。 虽然前者也可以受益于在初级保健环境中进行的研究,从而导致发展 视网膜血流作为诊断的强大生物标志物,后者可以受益于患者依从性的提高和 通过远程医疗方法可以实现早期诊断。 如果我们成功,这项研究将能够向美国 FDA 提交 510(k) 申请,寻求批准将经过验证的产品推向市场 XyCAM 作为通用视网膜成像仪,为我们提供了必要的早期可行性数据,证明多中心的合理性 临床试验研究各种疾病诊断的敏感性和特异性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhishek Rege其他文献

Abhishek Rege的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhishek Rege', 18)}}的其他基金

Ocular Blood Flow Imaging for Glaucoma Assessment
用于青光眼评估的眼血流成像
  • 批准号:
    10483638
  • 财政年份:
    2022
  • 资助金额:
    $ 74.05万
  • 项目类别:
Ocular Blood Flow Imaging for Glaucoma Assessment
用于青光眼评估的眼血流成像
  • 批准号:
    10617379
  • 财政年份:
    2022
  • 资助金额:
    $ 74.05万
  • 项目类别:
Ocular Blood Flow Imaging for Glaucoma Assessment
用于青光眼评估的眼血流成像
  • 批准号:
    10867973
  • 财政年份:
    2022
  • 资助金额:
    $ 74.05万
  • 项目类别:
Dye-free, on-demand visualization of blood flow during cerebrovascular surgery
脑血管手术期间血流的无染料、按需可视化
  • 批准号:
    10483677
  • 财政年份:
    2022
  • 资助金额:
    $ 74.05万
  • 项目类别:
Dye-free, on-demand visualization of blood flow during cerebrovascular surgery
脑血管手术期间血流的无染料、按需可视化
  • 批准号:
    10598593
  • 财政年份:
    2022
  • 资助金额:
    $ 74.05万
  • 项目类别:
Assessment of episcleral vasculature for glaucoma management
青光眼治疗中巩膜外层血管系统的评估
  • 批准号:
    10324938
  • 财政年份:
    2021
  • 资助金额:
    $ 74.05万
  • 项目类别:
Development of Flow Based Biomarkers for Retinopathy of Prematurity - Supplemental Aim
基于流的早产儿视网膜病变生物标志物的开发 - 补充目标
  • 批准号:
    10098795
  • 财政年份:
    2019
  • 资助金额:
    $ 74.05万
  • 项目类别:

相似国自然基金

员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
  • 批准号:
    72302005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 74.05万
  • 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 74.05万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 74.05万
  • 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 74.05万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 74.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了