Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
基本信息
- 批准号:10709094
- 负责人:
- 金额:$ 33.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAmericanAmyloid beta-ProteinBehaviorBehavior monitoringBiological MarkersBrain imagingCause of DeathCellsClinicalClinical MarkersClinical TrialsCognitionCognitiveCohort StudiesDataData SourcesDatabasesDementiaDetectionDigital biomarkerDisease ProgressionEarly DiagnosisEarly InterventionEarly identificationEffectivenessElderlyFailureFundingGoalsHeart DiseasesHomeImageIndividualLanguageLanguage DevelopmentLeadLearningMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMeasurementMeasuresMemory LossModalityModelingNeuropsychological TestsOutpatientsPathologicPatient Self-ReportPatientsPatternPerformancePersonsProteomicsReportingResidential FacilitiesRiskSample SizeScientistSignal TransductionStructureTest ResultTrainingUnited StatesWorkbrain cellcognitive changecohortcomputer frameworkcost effectiveeffective therapyimaging biomarkerimprovedin vivoinsightlearning algorithmmachine learning algorithmmachine learning modelmild cognitive impairmentmultimodalitynovelparent projectpredictive modelingresponsescreeningsensorsuccesstau Proteinstransfer learninguser-friendly
项目摘要
Project Summary
Recent estimates indicate that Alzheimer’s disease (AD) may rank as the third leading cause of death
for older people in the United States, just behind heart disease and cancer. While scientists know that
AD involves a progressive brain cell failure, the reason why cells fail is still not clear. To understand the
progression of the disease, one of the keys is to investigate the cognitive changes in patients with mild
cognitive impairment (MCI). Even though biomarkers such as imaging and clinical functions are found
to be outstanding in differentiating AD patients from those with normal cognition (NC), studies suggest
that their discriminative power in early-stage MCI are rather limited. Detecting signals which distinguish
subjects with MCI from those with NC is challenging due to the low sensitivity and high variability of
current clinical measures such as annually assessed neuropsychological test results and self-reported
functional measurements. Moreover, even though in-vivo biomarkers such as beta-amyloid and tau can
be used as indicators of pathological progression towards AD, the screening of biomarkers are
prohibitively expensive to be widely used among pre-symptomatic individuals in the outpatient setting.
We hypothesize that progressive cognitive impact from MCI has elicited detectable changes in the way
people talk and behave, which can be sensed by inexpensive and accessible sensors and leveraged
by machine learning (ML) algorithms to build predictive models for quantifying the risk of MCI. Our
preliminary results on a small cohort indicated that there are significant differences between MCI and
NC subjects during a semi-structured conversation, and ML algorithms can use such differences for
differentiating MCI and NC with promising performance. Our preliminary results in behavior monitoring
also suggest highly predictive performance using temporal patterns of behavior signals. In the parent
project, we are building upon our initial success and conduct comprehensive studies on language and
behavior markers in larger-scale cohorts to build high-performance and interpretable ML models for
screening MCI. This supplement builds on our current work on digital biomarkers and will focus on
further refining the prediction capability of digital biomarkers. Recently, the availability of MRI data from
I-CONECT study has provided Unanticipated Opportunity for us to dramatically improve the quality of
digital biomarkers. To achieve this goal, in Aim S1 we propose to develop a data-driven algorithms
framework that uses high-quality imaging information as auxiliary information to increase the predictive
performance of language markers; in Aim S2 we propose to develop a computational framework to use
public language databases to improve the quality of language markers. This supplement, if funded, will
significant predictive performance improvements of digital biomarkers and therefore improve the
predictive power of early detection of MCI.
项目概要
最近的估计表明,阿尔茨海默病(AD)可能成为第三大死因
对于美国老年人来说,仅次于心脏病和癌症。
AD涉及进行性脑细胞衰竭,目前尚不清楚细胞衰竭的原因。
疾病的进展,关键之一是调查轻度患者的认知变化
尽管发现了影像学和临床功能等生物标志物。
研究表明,在区分 AD 患者与认知正常 (NC) 患者方面表现出色
它们在早期 MCI 检测信号中的区分能力相当有限。
由于敏感性低且变异性高,MCI 受试者与 NC 受试者相比具有挑战性。
当前的临床措施,例如每年评估的神经心理学测试结果和自我报告
此外,尽管 β-淀粉样蛋白和 tau 蛋白等体内生物标志物可以进行功能测量。
作为AD病理进展的指标,生物标志物的筛选是
在门诊环境中的症状前个体中广泛使用的费用过高。
我们发现,MCI 对认知的渐进影响已经引起了可察觉的变化
人们的说话和行为可以通过廉价且易于使用的传感器来感知并利用
通过机器学习 (ML) 算法构建预测模型来量化 MCI 的风险。
一个小队列的初步结果表明,MCI 和 MCI 之间存在显着差异。
半结构化对话期间的 NC 主题,ML 算法可以利用这种差异
我们在行为监控方面的初步结果使 MCI 和 NC 区分开来。
还建议使用父母行为信号的时间模式进行高度预测。
项目中,我们正在初步成功的基础上,对语言和
大规模群体中的行为标记,以构建高性能且可解释的机器学习模型
本补充材料建立在我们目前在数字生物标志物方面的工作的基础上,并将重点关注
进一步完善数字生物标记的预测能力最近,MRI 数据的可用性。
I-CONECT 研究为我们大幅提高质量提供了意想不到的机会
为了实现这一目标,在 Aim S1 中,我们建议开发一种数据驱动的算法。
使用高质量成像信息作为辅助信息来增加预测的框架
语言标记的性能;在 Aim S2 中,我们建议开发一个计算框架来使用
公共语言数据库,以提高语言标记的质量。如果获得资助,该补充品将。
数字生物标志物的预测性能显着提高,从而提高
MCI 早期检测的预测能力。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS.
使用 AREDS 中的纵向数据对晚期 AMD 的预后进行基于多任务深度学习的生存分析。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ghahramani, Gregory;Brendel, Matthew;Lin, Mingquan;Chen, Qingyu;Keenan, Tiarnan;Chen, Kun;Chew, Emily;Lu, Zhiyong;Peng, Yifan;Wang, Fei
- 通讯作者:Wang, Fei
Generalizability of a Machine Learning Model for Improving Utilization of Parathyroid Hormone-Related Peptide Testing across Multiple Clinical Centers.
机器学习模型的通用性,可提高多个临床中心甲状旁腺激素相关肽测试的利用率。
- DOI:
- 发表时间:2023-11-02
- 期刊:
- 影响因子:9.3
- 作者:Yang, He S;Pan, Weishen;Wang, Yingheng;Zaydman, Mark A;Spies, Nicholas C;Zhao, Zhen;Guise, Theresa A;Meng, Qing H;Wang, Fei
- 通讯作者:Wang, Fei
Comparison of Prompt Engineering and Fine-Tuning Strategies in Large Language Models in the Classification of Clinical Notes.
临床笔记分类中大型语言模型的快速工程和微调策略的比较。
- DOI:
- 发表时间:2024-02-08
- 期刊:
- 影响因子:0
- 作者:Zhang, Xiaodan;Talukdar, Nabasmita;Vemulapalli, Sandeep;Ahn, Sumyeong;Wang, Jiankun;Meng, Han;Murtaza, Sardar Mehtab Bin;Leshchiner, Dmitry;Dave, Aakash Ajay;Joseph, Dimitri F;Witteveen;Chesla, Dave;Zhou, Jiayu;Chen, Bin
- 通讯作者:Chen, Bin
Artificial intelligence for COVID-19: battling the pandemic with computational intelligence.
COVID-19 人工智能:利用计算智能抗击疫情。
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Xu, Zhenxing;Su, Chang;Xiao, Yunyu;Wang, Fei
- 通讯作者:Wang, Fei
Transfer Learning in Deep Reinforcement Learning: A Survey.
深度强化学习中的迁移学习:一项调查。
- DOI:
- 发表时间:2023-11
- 期刊:
- 影响因子:23.6
- 作者:Zhu, Zhuangdi;Lin, Kaixiang;Jain, Anil K;Zhou, Jiayu
- 通讯作者:Zhou, Jiayu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKO Hayama DODGE其他文献
HIROKO Hayama DODGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKO Hayama DODGE', 18)}}的其他基金
Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
- 批准号:
10212669 - 财政年份:2021
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9311584 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I Administrative Supplement
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段行政补充
- 批准号:
10363310 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9898209 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9930344 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Conversational Engagement as a Means to Delay Onset AD: Phase II Administrative Supplement
对话参与作为延迟 AD 发作的一种手段:第二阶段行政补充
- 批准号:
10058784 - 财政年份:2016
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9348726 - 财政年份:2016
- 资助金额:
$ 33.03万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
- 批准号:
10834339 - 财政年份:2023
- 资助金额:
$ 33.03万 - 项目类别:
Secondary Analysis and Integration of Existing Data Related to Chronic Orofacial Pain and Placebo Effects - Administrative Supplement
与慢性口面部疼痛和安慰剂效应相关的现有数据的二次分析和整合 - 行政补充
- 批准号:
10741330 - 财政年份:2023
- 资助金额:
$ 33.03万 - 项目类别:
Leveraging genetic and electronic health records data to identify novel targets and drugs for treating alcohol
利用遗传和电子健康记录数据来确定治疗酒精的新靶点和药物
- 批准号:
10888495 - 财政年份:2023
- 资助金额:
$ 33.03万 - 项目类别:
Improving identification and healthcare for patients with Inherited Cancer Syndromes: Evidence-based EMR implementation using a web-based computer platform
改善遗传性癌症综合征患者的识别和医疗保健:使用基于网络的计算机平台实施基于证据的 EMR
- 批准号:
10831647 - 财政年份:2023
- 资助金额:
$ 33.03万 - 项目类别:
Administrative Supplement - Rapid Actionable Data for Opioid Response in Kentucky (RADOR-KY)
行政补充 - 肯塔基州阿片类药物反应的快速可操作数据 (RADOR-KY)
- 批准号:
10850016 - 财政年份:2022
- 资助金额:
$ 33.03万 - 项目类别: