Reprogramming proteases: tackling human diseases with next-generation modulators
重编程蛋白酶:用下一代调节剂应对人类疾病
基本信息
- 批准号:10709575
- 负责人:
- 金额:$ 27.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-24 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlzheimer&aposs DiseaseAutoimmune DiseasesBindingBiochemistryCommunicable DiseasesCommunicationDataDiseaseDistalEngineeringEnzymesEpitopesFunctional disorderGoalsGuidelinesHIV ProteaseInsulinaseInvestigationLibrariesLigandsMachine LearningMalignant NeoplasmsMapsMolecularMolecular ConformationNerve DegenerationNeurosciencesNon-Insulin-Dependent Diabetes MellitusPeptide HydrolasesPeptidyl-Dipeptidase APharmaceutical PreparationsPhysiologicalPost-Translational Protein ProcessingProcessPropertyProteinsProtocols documentationRegulationResearchSiteStructureTrainingWorkbeta secretasedesigndrug discoveryexperiencehigh throughput screeninghuman diseasemachine learning algorithmmultidisciplinarymutation screeningnanobodiesnext generationnovelpreferenceprogramsremediationsuccesstherapeutic targettool
项目摘要
PROJECT SUMMARY
Although proteases are widely known to be involved in disease pathophysiology, a consequential
challenge in protease drug discovery is to design or isolate a specific ligand that selectively inhibits or activates
a target protease to remediate disease states and facilitate mechanistic investigations. However, besides well-
studied enzymes such as angiotensin-converting enzyme and HIV protease, developing drugs for new
protease targets has proven an iterative, arduous, and often unsuccessful process. Recognizing that the
property of a ligand ultimately dictates its modulatory function and binding mechanism, the proposed research
postulates two hypotheses. First, if molecules are selected directly based on their modulatory function from
large libraries, their properties will directly relate to their function, rather than their binding capabilities. Second,
if the binding mechanism a modulator is determined, functional relationships between ligand properties and
mechanism can be developed and possibly extended these findings to related proteases. The proposed
research pursues three directions, with an overall objective to transform protease ligand discovery and
protease biochemistry from iterative endeavors to data-driven, and ultimately predictive processes. The first
research direction will establish a machine learning (ML)-guided high-throughput screening platform that
isolates protein-based protease modulators directly based on how they alter protease function. Here, property-
function relationships will train machine learning algorithms for function prediction and ML-guided library design
will significantly reduce the search space for protease modulators while exploring distal regulation diversity
more comprehensively. In a second research direction, this platform will be extended to isolate nanobody-
based substrate selective modulators of β-secretase and insulin-degrading enzyme, two proteases that are key
therapeutic targets in Alzheimer’s disease and Type-2-Diabetes, respectively. The ability to finely reprogram
the substrate selectivity of proteases can revolutionize how to study and drug polyspecific enzymes and lead to
successfully targeting previously undruggable proteases. The third research direction will implement deep
mutational scanning protocols to map the modulatory landscape of proteases and determine how modulators
alter protease substrate preference at the molecular and physiological scale. This approach will identify
conformational epitopes of modulators, characterize novel distal sites, and uncover long-range distal
communication. Taken together, the long-term payoff of these studies is to establish generalizable ligand
design guidelines based on ternary relationships between ligand property, binding mechanism/protease
structure and modulatory function, enabling one to better understand how proteases work and how to control
them. The vast experience of the Denard research lab in high-throughput protease engineering and support
from a machine learning expert and neuroscience expert, respectively, strongly supports the feasibility,
success, and sustainability of this multidisciplinary, and potentially broadly impactful independent program.
项目概要
尽管众所周知蛋白酶与疾病病理生理学有关,但随之而来的
蛋白酶药物发现的挑战是设计或分离选择性抑制或激活的特定配体
一种修复疾病状态并促进机制研究的目标蛋白酶。
研究血管紧张素转换酶和艾滋病毒蛋白酶等酶,开发新的药物
蛋白酶靶标已被证明是一个反复、艰巨且常常不成功的过程。
配体的性质最终决定了其调节功能和结合机制,拟议的研究
首先,假设分子是直接根据其调节功能来选择的。
大型库,它们的属性将直接与它们的功能相关,而不是它们的绑定能力。
如果调节剂的结合机制已确定,配体特性和配体之间的功能关系
可以开发机制并可能将这些发现扩展到相关的蛋白酶。
研究追求三个方向,总体目标是改变蛋白酶配体的发现和
蛋白酶生物化学从迭代努力到数据驱动,以及最终的预测过程。
研究方向将建立一个机器学习(ML)引导的高通量筛选平台,
直接根据它们如何改变蛋白酶功能来分离基于蛋白质的蛋白酶调节剂。
函数关系将训练用于函数预测和 ML 引导的库设计的机器学习算法
将显着减少蛋白酶调节剂的搜索空间,同时探索远端调节多样性
在第二个研究方向中,该平台将扩展到分离纳米抗体。
基于β-分泌酶和胰岛素降解酶的底物选择性调节剂,这两种蛋白酶是关键
分别是阿尔茨海默病和 2 型糖尿病的治疗靶标。
蛋白酶的底物选择性可以彻底改变多特异性酶的研究和药物治疗方式,并导致
第三个研究方向将成功针对以前无法成药的蛋白酶。
突变扫描方案绘制蛋白酶的调节图谱并确定调节剂如何
这种方法将在分子和生理水平上改变蛋白酶底物偏好。
调节剂的构象表位,表征新的远端位点,并揭示长程远端
总而言之,这些研究的长期回报是建立可推广的配体。
基于配体特性、结合机制/蛋白酶之间三元关系的设计指南
结构和调节功能,使人们能够更好地了解蛋白酶如何工作以及如何控制
Denard 研究实验室在高通量蛋白酶工程和支持方面拥有丰富的经验。
分别来自机器学习专家和神经科学专家,强烈支持可行性,
这个多学科且具有潜在广泛影响力的独立项目的成功和可持续性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Denard其他文献
Carl Denard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carl Denard', 18)}}的其他基金
AWD13299 Admin Supplement to Support Undergraduate Summer Research Experiences
AWD13299 支持本科生暑期研究经历的管理补充
- 批准号:
10808664 - 财政年份:2022
- 资助金额:
$ 27.19万 - 项目类别:
Machine Learning-Guided Engineering of Protease Modulators
机器学习引导的蛋白酶调节剂工程
- 批准号:
10353932 - 财政年份:2022
- 资助金额:
$ 27.19万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 27.19万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 27.19万 - 项目类别: