Shape Learning: Computational Changes in Chronically Studied Neural Populations
形状学习:长期研究的神经群体的计算变化
基本信息
- 批准号:9248364
- 负责人:
- 金额:$ 42.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgnosiaAutistic DisorderBehaviorBehavioralBlindnessCategoriesChronicCodeComplexDataDevelopmentDiscriminationDiseaseDyslexiaElectrophysiology (science)FutureGenetic ProgrammingGeometryGoalsHumanImplantIndividualInvestigationLaboratoriesLeadLearningLesionMathematicsMeasuresMethodologyMonkeysNeuronsPathway interactionsPatientsPatternPerceptionPerformancePhysiologicalPopulationPositioning AttributePrimatesProsthesisRecurrenceRegression AnalysisRehabilitation therapySamplingShapesSignal TransductionSpeedStimulusTestingTimeTrainingVisualVisual CortexVisual impairmentbasecell cortexcombinatorialfeedinginferotemporal cortexinformation processinginsightmathematical analysisneural circuitpublic health relevancerelating to nervous systemresponseshape analysisvisual learning
项目摘要
DESCRIPTION (provided by applicant): Learning to discriminate new shapes is a fundamental visual ability for humans and other primates. It depends on long-term changes in shape computations in the ventral pathway of primate visual cortex, especially at final stages in IT (inferotemporal cortex). Our goal is to investigate these changes at the level of individual neurons and neural circuits, by (i) analyzing progressive shape computation changes in continuously identified neural populations across long timescales (weeks to months) and (ii) correlating these changes with improvements in shape discrimination accuracy and speed. We would achieve this goal by combining methodologies developed in our two laboratories. The Connor lab has developed mathematical analyses of neural shape computations, based on large-scale adaptive stimulus sampling guided by genetic algorithms and multi- dimensional parameterization of stimulus geometry. The Leopold lab has developed the use of microwire bundle implants for long-term electrophysiological recording from populations of IT neurons, continuously identified by their signature response patterns across 100s of stimuli. Adaptive sampling can leverage the order of magnitude increase in sampling time with microwire bundles, offering a new paradigm for high- throughput testing of mathematically tractable object stimuli in ventral pathway cortex. Based on our previous investigations of shape coding and shape processing dynamics, we hypothesize that learning to discriminate a new shape accurately and rapidly is based on a progression through distinct combinatorial computations operating on that shape's constituent fragments: (i) Initial low-accuracy behavior reflects linear combination of shape fragment signals, present in the untrained state, yielding only ambiguous information about complex shape configurations; (ii) Increasing accuracy during early learning reflects recurrent network nonlinear computations, yielding slow but unambiguous signals for shape fragment combinations; (iii) Increasing speed during late learning reflects feed-forward nonlinear computations, yielding accurate, fast performance. Chronic microwire recording will allow us to track this computational progression, for dozens of individual neurons, and correlate computational changes with behavioral improvements through time. This would be the first continuous observation of computational changes in individual IT cells during extended periods of visual learning (weeks to months). Whether or not the specific hypotheses are verified, this will provide the most direct insights to date into how specific changes in IT circuit-level information processing relate to shape learning, which is critical to our understanding of symbols and objects.
描述(由适用提供):学习区分新形状是人类和其他主要的基本视觉能力。这取决于主要视觉皮层的腹侧途径中形状计算的长期变化,尤其是在IT的最后阶段(颞下皮皮层)。我们的目标是通过(i)分析在长时间尺度(几周到几个月)的连续鉴定的神经元种群中的渐进形状计算变化,研究这些变化,以及(ii)将这些变化与形状歧视精度和速度的改善相关联。我们将通过结合两个实验室中开发的方法来实现这一目标。康纳实验室(Connor Lab)基于遗传算法和刺激几何学的多维参数化引导的大规模自适应刺激采样,开发了神经元形状计算的数学分析。利奥波德实验室(Leopold Lab)开发了使用Microwire束机器来从IT神经元种群中进行的长期电生理记录,该记录通过100s刺激中的签名响应模式不断识别。自适应采样可以利用微型束束的抽样时间增加数量级,从而为腹侧途径皮层中数学上可牵引的物体刺激提供新的范式,以进行高通量测试。基于我们先前对形状编码和形状处理动力学的研究,我们假设学会准确,迅速地区分新的形状是基于通过在该形状的一致性碎片上运行的不同组合计算进行的进展:(i)最初的低智能行为行为是形状碎片的线性组合,反映了形状碎片的线性组合,仅在未经传播的状态中出现,仅构成了复杂的形状信息,就可以进行复杂的信息。 (ii)在早期学习期间提高准确性反映了反复的网络非线性计算,产生了形状碎片组合的缓慢但明确的信号; (iii)在晚期学习期间提高速度,反映了前进的非线性计算,得出准确,快速的性能。慢性微导期的记录将使我们能够跟踪数十个单个神经元的计算进程,并将计算变化与随着时间的推移行为改善相关联。这将是在视觉学习的长时间(数周到几个月)中对单个IT细胞中单个IT细胞中计算变化的第一次连续观察。无论是否验证了特定的假设,这将为迄今为止的最直接见解,以了解IT电路级信息处理中的特定变化与形状学习有关,这对于我们对符号和对象的理解至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES E CONNOR其他文献
CHARLES E CONNOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES E CONNOR', 18)}}的其他基金
CONVERGENT PROCESSING ACROSS VISUAL AND HAPTIC CIRCUITS FOR 3D SHAPE PERCEPTION
跨视觉和触觉电路的融合处理,实现 3D 形状感知
- 批准号:
10720137 - 财政年份:2023
- 资助金额:
$ 42.46万 - 项目类别:
Early representation of 3D volumetric shape in visual object processing
视觉对象处理中 3D 体积形状的早期表示
- 批准号:
10412966 - 财政年份:2018
- 资助金额:
$ 42.46万 - 项目类别:
Shape Learning: Computational Changes in Chronically Studied Neural Populations
形状学习:长期研究的神经群体的计算变化
- 批准号:
8858962 - 财政年份:2015
- 资助金额:
$ 42.46万 - 项目类别:
Neural Coding of 3D Object and Place Structure in Two Cortical Pathways
两条皮质通路中 3D 物体和位置结构的神经编码
- 批准号:
8612222 - 财政年份:2014
- 资助金额:
$ 42.46万 - 项目类别:
Neural Coding of 3D Object and Place Structure in Two Cortical Pathways
两条皮质通路中 3D 物体和位置结构的神经编码
- 批准号:
8997097 - 财政年份:2014
- 资助金额:
$ 42.46万 - 项目类别:
CRCNS - Higher-Level Neural Specialization/Natural Shape
CRCNS - 高级神经专业化/自然形状
- 批准号:
7047434 - 财政年份:2005
- 资助金额:
$ 42.46万 - 项目类别:
相似国自然基金
PV中间神经元中Cul3调节自闭症样行为的机制研究
- 批准号:32300817
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海马DG脑区PV抑制性中间神经元参与认知灵活性调控的机制及其失调与自闭症样行为的关系
- 批准号:82301727
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群调控小胶质细胞circRNA在草甘膦类除草剂导致自闭症样行为中作用和机制
- 批准号:82304096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腹侧中线丘脑调控自闭症样重复刻板行为的功能及机制研究
- 批准号:82201705
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
DNMT3L改变组蛋白甲基化增强谷氨酸受体GRIN2B、GRIA2表达致自闭症样行为的表观遗传机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Shape Learning: Computational Changes in Chronically Studied Neural Populations
形状学习:长期研究的神经群体的计算变化
- 批准号:
8858962 - 财政年份:2015
- 资助金额:
$ 42.46万 - 项目类别:
Effects of category learning on visual representations
类别学习对视觉表征的影响
- 批准号:
7806743 - 财政年份:2009
- 资助金额:
$ 42.46万 - 项目类别:
Functional Organization of Visual Object Processing
视觉对象处理的功能组织
- 批准号:
8088104 - 财政年份:2007
- 资助金额:
$ 42.46万 - 项目类别:
CRCNS: A model-based investigation of face processing in autism
CRCNS:基于模型的自闭症面部处理研究
- 批准号:
7281164 - 财政年份:2005
- 资助金额:
$ 42.46万 - 项目类别: