Mechanism of APE1 in DNA damage response
APE1在DNA损伤反应中的机制
基本信息
- 批准号:9492890
- 负责人:
- 金额:$ 34.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-13 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:APEXL2 GeneB-LymphocytesBase Excision RepairsBindingBiochemicalCancer cell lineCell CycleCell LineCellsChromatinDNADNA DamageDNA RepairDNA Repair PathwayDNA Replication DamageDNA Single Strand BreakDNA replication forkDNA-(apurinic or apyrimidinic site) lyaseDataDiseaseExcisionExonucleaseFailureGenetic TranscriptionGenome StabilityGenomic InstabilityGoalsHumanHydrogen PeroxideIn VitroKnowledgeLeadLearningMalignant NeoplasmsMalignant neoplasm of pancreasMammalian CellMediatingMetabolismMolecularMusNeurodegenerative DisordersOutcomes ResearchOxidation-ReductionOxidative StressPathway interactionsPhasePhosphodiesterase IPlasmidsPlayProcessPublishingRanaReactive Oxygen SpeciesRecombinant ProteinsResearch Project GrantsRoleSignal PathwaySignal TransductionSiteSpeedStructureSystemTREX1 geneTestingTimeTranscriptional RegulationWorkXenopusbasecancer cellcancer therapychemotherapeutic agenteggenvironmental agentinhibitor/antagonistinnovationinsightnovelnovel therapeutic interventionoxidative DNA damagepancreatic cancer cellspreventrecruitrepairedresponsetumorigenesis
项目摘要
Project Summary/Abstract
DNA single-strand breaks (SSBs) can be caused by oxidative stress, or intermediate products of various
DNA metabolisms including DNA replication and damage repair. Unrepaired oxidative DNA damage and
SSBs may result in replication fork collapse or transcription machinery failure. Oxidative DNA damage
and SSBs are critical challenges to genomic stability and can lead to tumorigenesis when they are not
repaired quickly or properly. Current understanding of molecular mechanisms underlying checkpoint
signaling and regulatory mechanisms in response to oxidative DNA damage and SSBs is limited or
indirect because of the lack of feasible experimental systems. Whereas APE1 (AP endonuclease 1) is
known for its critical functions in base excision repair and transcriptional regulation, it is currently
unknown whether APE1 plays an essential role in DNA damage response (DDR) pathway. Our published
work and substantial preliminary data suggest that APE1 is essential for activating the ATR-dependent
DDR pathway in oxidative stress, that a distinct ATR-Chk1 checkpoint response is activated by a defined
plasmid-based SSB structure, and that APE1 associates with ATRIP and TopBP1. Our major hypothesis
is that APE1 plays an vital role in checkpoint signaling in response to oxidative stress and SSBs. To test
this directly, our specific aims include: (1) to determine whether APE1 plays an important role in the
initiation of SSB end resection in the 3'-5 direction via its exonuclease activity for the SSB signaling; (2)
to determine how APE1 interacts with ATRIP in DDR pathway, and (3) to determine how TopBP1 is
regulated to activate the ATR-Chk1 checkpoint signaling and whether the role of APE1 in DDR is
conserved in pancreatic cancer cells. We have established two complementary approaches to study
checkpoint signaling pathway: (1) hydrogen peroxide-induced multiple SSBs randomly distributed on
chromatin in a replicating Xenopus LSS system, and (2) plasmid-based site-specific SSB structures in a
nonreplicating Xenopus HSS system. Using innovative biochemical and structure-function analysis in
Xenopus egg extracts, we will demonstrate how oxidative DNA damage and SSBs are recognized and
processed by APE1 in coordination with ATRIP and TopBP1 to regulate checkpoint signaling. We will
also validate our findings from Xenopus egg extract system in mammalian cells including pancreatic
cancer cells. The anticipated outcomes of this research project will help us better understand how
genome stability is maintained in cellular response to oxidative DNA damage and SSBs. All together, this
research project will advance our scientific knowledge conceptually on how cancers develop, and open
avenues to new therapeutic strategies, especially for pancreatic cancer.
项目概要/摘要
DNA 单链断裂 (SSB) 可能是由氧化应激或各种中间产物引起的
DNA 代谢包括 DNA 复制和损伤修复。未修复的氧化DNA损伤和
SSB 可能会导致复制叉崩溃或转录机器故障。 DNA氧化损伤
和 SSB 是基因组稳定性的关键挑战,当它们不存在时可能导致肿瘤发生
快速或正确地修复。目前对检查点分子机制的理解
响应氧化 DNA 损伤和 SSB 的信号传导和调节机制有限或
间接原因是缺乏可行的实验系统。而 APE1(AP 核酸内切酶 1)是
它以其在碱基切除修复和转录调控中的关键功能而闻名,目前
尚不清楚 APE1 是否在 DNA 损伤反应 (DDR) 途径中发挥重要作用。我们发表的
工作和大量初步数据表明 APE1 对于激活 ATR 依赖性
氧化应激中的 DDR 通路,独特的 ATR-Chk1 检查点反应由定义的激活
基于质粒的 SSB 结构,并且 APE1 与 ATRIP 和 TopBP1 相关。我们的主要假设
APE1 在响应氧化应激和 SSB 的检查点信号传导中发挥着至关重要的作用。测试
直接地说,我们的具体目标包括:(1)确定APE1是否在
通过其对 SSB 信号传导的核酸外切酶活性,启动 3'-5 方向的 SSB 末端切除; (2)
确定 APE1 如何与 DDR 通路中的 ATRIP 相互作用,以及 (3) 确定 TopBP1 如何作用
调节激活 ATR-Chk1 检查点信号传导以及 APE1 在 DDR 中的作用是否
在胰腺癌细胞中保守。我们建立了两种互补的研究方法
检查点信号通路:(1)过氧化氢诱导的多个SSB随机分布在
复制爪蟾 LSS 系统中的染色质,以及 (2) 复制中基于质粒的位点特异性 SSB 结构
非复制型 Xenopus HSS 系统。使用创新的生化和结构功能分析
非洲爪蟾卵提取物,我们将演示如何识别和识别氧化 DNA 损伤和 SSB
由 APE1 与 ATRIP 和 TopBP1 协调处理以调节检查点信号传导。我们将
还验证了我们在哺乳动物细胞(包括胰腺细胞)中从非洲爪蟾卵提取物系统中获得的发现
癌细胞。该研究项目的预期成果将帮助我们更好地了解如何
细胞对氧化 DNA 损伤和 SSB 的反应维持了基因组稳定性。总而言之,这
研究项目将从概念上推进我们关于癌症如何发展的科学知识,并开放
新的治疗策略的途径,特别是对于胰腺癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shan Yan其他文献
Shan Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shan Yan', 18)}}的其他基金
Role of TopBP1 partner WDR18 in DNA damage checkpoint and DNA replication
TopBP1 伴侣 WDR18 在 DNA 损伤检查点和 DNA 复制中的作用
- 批准号:
8290653 - 财政年份:2012
- 资助金额:
$ 34.18万 - 项目类别:
相似国自然基金
Hippo信号通路调控B淋巴细胞分化在狼疮肾炎中的作用与机制研究
- 批准号:82302023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非典型蛋白激酶C在B淋巴细胞介导免疫应答中的作用机制研究
- 批准号:32300740
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CD55+B淋巴细胞促进食管癌新辅助免疫治疗耐药的作用及机制研究
- 批准号:82373371
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
WDR68通过PRC1复合体增强H3K27ac修饰促进急性B淋巴细胞白血病发生的机制及预后价值研究
- 批准号:82302600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ANKFY1介导的B淋巴细胞异常免疫活化在系统性红斑狼疮发生发展的机制研究
- 批准号:82302036
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of TET2-dependent control of CAR T cell fate determination and antitumor function
TET2依赖性控制CAR T细胞命运决定和抗肿瘤功能的机制
- 批准号:
10533873 - 财政年份:2022
- 资助金额:
$ 34.18万 - 项目类别:
Molecular Mechanisms Regulating Immunoglobulin Diversification
调节免疫球蛋白多样化的分子机制
- 批准号:
10359676 - 财政年份:2019
- 资助金额:
$ 34.18万 - 项目类别: