Real-Time Monitoring Device for Vascular Signals

血管信号实时监测装置

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Long-term dialysis success and cost is dependent on maintaining a patient's vascular access, a surgically- created artery-vein bypass region that can permit high blood flow. During dialysis, blood is drawn from a needle in the arterial side of the access, filtered by a hemodialysis unit, and then returned to the patient through a second downstream needle. The vascular access is also known as the "Achilles Heel" of hemodialysis, as maintaining the high flow characteristics (access patency) is critical to achieving efficient dialysis treatment. Vascular accesses are subjected to monitoring and surveillance to identify internal narrowing (stenosis) which can lead to access blockage (thrombosis). The goal of access monitoring is to pre- emptively treat stenosis with a routine surgical procedure before thrombosis occurs. Current access monitoring relies on skilled operators and specialized equipment and cannot be effectively applied to all patients due to economic realities within the hemodialysis standard-of-care. We propose clinical experiments to demonstrate and evaluate new approaches for non-invasive screening of hemodialysis vascular access patency. We are interested in studying the feasibility of autonomously gathering vascular signals using digital stethoscopes and skin temperature measurements to provide a continuous and real-time measure of arteriovenous graft patency. We will pursue this research to answer hypotheses regarding the reproducibility and feasibility of this non-invasive monitoring method, and to demonstrate innovative technology to enable clinical application. A second objective of this work is to train Steve Majerus to be an independent researcher capable of investigating future directions for vascular health technology. Our research plan will be conducted through two objectives. Objective 1 will conduct a clinical study at the Cleveland VA Midtown Hemodialysis Center in which digital stethoscopes and infrared (IR) thermometers will be used to gather non-invasive signals near patient's vascular accesses. These signals have been shown to be accurate indicators of access patency; we seek to understand the signal characteristics and variability across patients and within patients on chronic dialysis. Objective 2 will determine the feasibility of non-invasively measuring vascular sounds and skin temperatures using wireless electronics. This is an important experiment to understand the reproducibility and variability of this approach. To make an impact within the realities of over-loaded dialysis clinics, the measurement method must be convenient to use and accurate when used by a non-physician. The limitations of the proposed wireless approach will be assessed to determine prototype feasibility and future directions. This study aims to pursue hypothesis-driven research while producing innovative platform technologies in the fields of vascular signal analysis and wireless, wearable sensor design. A comprehensive analysis of phonoangiograms and skin temperature measurements relative to vascular access stenosis level and location has not yet been published. Published examples of wireless screening tools have relied on traditional auscultation via a skilled operator. We seek to demonstrate the feasibility of state-of-the-art electronics and sensor integration technology that is suitable for clinical deployment. This technology would be an excellent candidate for clinical translation as it could enable simple screening of vascular access patency within the economic constraints of freestanding dialysis clinics.
 描述(由申请人提供): 长期的透析和成本取决于患者的血管中的高血流量,因为保持高流量特征(访问通畅)对于实现效率治疗至关重要。通过常规的手术,在血栓形成之前就依靠熟练的操作员和专门的设备,并且由于体重分析的经济现实而无法应用于所有患者。我们有兴趣使用数字听诊器和皮肤温度测量来研究自主收集血管信号,这是一种连续的,实时的,对动脉移植的静脉注射量。这种非侵入性监测方法,并证明了能够调查ES的未来方向的临床研究人员。温度计将在患者的血管访问附近收集非侵入性信号。使用无线电子的血管声音和皮肤温度。这项研究旨在在Vasculn Al Anal Analy和Wireless领域生产创新的平台技术,对手机Noangiigraph lar访问狭窄水平进行全面分析,并且尚未公布位置。适用于临床部署的艺术电子和感官综合学是秘密的出色候选者,因为它可以简单地在G透析诊所的经济结构内简单地进行尖锐的访问Pascular访问。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible, Structured MWCNT/PDMS Sensor for Chronic Vascular Access Monitoring.
用于慢性血管通路监测的灵活、结构化 MWCNT/PDMS 传感器。
SKIN-COUPLED PVDF MICROPHONES FOR NONINVASIVE VASCULAR BLOOD SOUND MONITORING.
用于无创血管血音监测的皮肤耦合 PVDF 麦克风。
Stenosis Characterization and Identification for Dialysis Vascular Access.
Power Wheelchair Footplate Pressure and Positioning Sensor.
电动轮椅踏板压力和定位传感器。
Vascular Graft Pressure-Flow Monitoring Using 3D Printed MWCNT-PDMS Strain Sensors.
使用 3D 打印的 MWCNT-PDMS 应变传感器监测血管移植物压力流量。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Majerus其他文献

Steve Majerus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Majerus', 18)}}的其他基金

Triggered sacral neuromodulation to treat neurogenic detrusor overactivity based on algorithmic classification of bladder filling status from wireless pressure data.
根据无线压力数据对膀胱充盈状态的算法分类,触发骶神经调节来治疗神经源性逼尿肌过度活动。
  • 批准号:
    10317462
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Toward wearable ultrasonic neurostimulation for daily at-home treatment of urinary urge incontinence
用于日常家庭治疗急迫性尿失禁的可穿戴超声神经刺激
  • 批准号:
    10363621
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

地表与大气层顶短波辐射多分量一体化遥感反演算法研究
  • 批准号:
    42371342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
  • 批准号:
    72361020
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
  • 批准号:
    52372329
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
  • 批准号:
    12361074
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

OCTA Precursors of Vision-Threatening Complications of Diabetic Retinopathy
OCTA 糖尿病视网膜病变视力威胁并发症的前兆
  • 批准号:
    10718643
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
AI-based Cardiac CT
基于人工智能的心脏CT
  • 批准号:
    10654259
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Monitoring of Glaucoma Patients in Advanced Disease
晚期青光眼患者的监测
  • 批准号:
    10503781
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Monitoring of Glaucoma Patients in Advanced Disease
晚期青光眼患者的监测
  • 批准号:
    10680523
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了