Real-Time Monitoring Device for Vascular Signals

血管信号实时监测装置

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Long-term dialysis success and cost is dependent on maintaining a patient's vascular access, a surgically- created artery-vein bypass region that can permit high blood flow. During dialysis, blood is drawn from a needle in the arterial side of the access, filtered by a hemodialysis unit, and then returned to the patient through a second downstream needle. The vascular access is also known as the "Achilles Heel" of hemodialysis, as maintaining the high flow characteristics (access patency) is critical to achieving efficient dialysis treatment. Vascular accesses are subjected to monitoring and surveillance to identify internal narrowing (stenosis) which can lead to access blockage (thrombosis). The goal of access monitoring is to pre- emptively treat stenosis with a routine surgical procedure before thrombosis occurs. Current access monitoring relies on skilled operators and specialized equipment and cannot be effectively applied to all patients due to economic realities within the hemodialysis standard-of-care. We propose clinical experiments to demonstrate and evaluate new approaches for non-invasive screening of hemodialysis vascular access patency. We are interested in studying the feasibility of autonomously gathering vascular signals using digital stethoscopes and skin temperature measurements to provide a continuous and real-time measure of arteriovenous graft patency. We will pursue this research to answer hypotheses regarding the reproducibility and feasibility of this non-invasive monitoring method, and to demonstrate innovative technology to enable clinical application. A second objective of this work is to train Steve Majerus to be an independent researcher capable of investigating future directions for vascular health technology. Our research plan will be conducted through two objectives. Objective 1 will conduct a clinical study at the Cleveland VA Midtown Hemodialysis Center in which digital stethoscopes and infrared (IR) thermometers will be used to gather non-invasive signals near patient's vascular accesses. These signals have been shown to be accurate indicators of access patency; we seek to understand the signal characteristics and variability across patients and within patients on chronic dialysis. Objective 2 will determine the feasibility of non-invasively measuring vascular sounds and skin temperatures using wireless electronics. This is an important experiment to understand the reproducibility and variability of this approach. To make an impact within the realities of over-loaded dialysis clinics, the measurement method must be convenient to use and accurate when used by a non-physician. The limitations of the proposed wireless approach will be assessed to determine prototype feasibility and future directions. This study aims to pursue hypothesis-driven research while producing innovative platform technologies in the fields of vascular signal analysis and wireless, wearable sensor design. A comprehensive analysis of phonoangiograms and skin temperature measurements relative to vascular access stenosis level and location has not yet been published. Published examples of wireless screening tools have relied on traditional auscultation via a skilled operator. We seek to demonstrate the feasibility of state-of-the-art electronics and sensor integration technology that is suitable for clinical deployment. This technology would be an excellent candidate for clinical translation as it could enable simple screening of vascular access patency within the economic constraints of freestanding dialysis clinics.
 描述(由申请人提供): 长期的透析成功和成本取决于维持患者的血管通道,这是一种手术创建的动脉静脉旁路区,可以允许高血流动。在透析过程中,从通道的动脉侧的针头抽出血液,由血液透析单元过滤,然后通过第二个下游针头返回患者。血管通道也称为血液透析的“阿喀琉斯高跟鞋”,因为保持高流量特征(获取通畅性)对于实现有效的透析治疗至关重要。血管通道受到监测和监视,以识别内部狭窄(狭窄),这可能导致进入阻塞(血栓形成)。访问监测的目的是在血栓形成之前先进行常规手术手术治疗狭窄。当前的访问监控依赖于熟练的操作员和专业设备,由于血液透析标准的经济现实,无法有效地应用于所有患者。我们提出了临床实验,以证明和评估血液透析血管通气通畅性非侵入性筛查的新方法。我们有兴趣研究使用数字STHECHOSCOPES和皮肤温度测量的自主收集血管信号的可行性,以提供动静的图形通畅性的连续实时测量。我们将进行这项研究,以回答有关这种非侵入性监测方法的可重复性和可行性的假设,并证明创新技术以实现临床应用。这项工作的第二个目标是培训史蒂夫·马耶鲁斯(Steve Majerus)成为一名独立研究人员,能够研究血管卫生技术的未来方向。我们的研究计划将通过两个目标进行。目标1将在Cleveland VA Midtown血液透析中心进行一项临床研究,其中数字听诊器和红外(IR)温度计将用于在患者血管通道附近收集非侵入性信号。这些信号已被证明是访问通畅性的准确指标。我们试图了解患者和患者内部慢性透析的信号特征和变异性。目标2将确定使用无线电子设备非侵入性测量血管声音和皮肤温度的可行性。这是一个重要的实验,以了解这种方法的生殖力和可变性。为了在透析诊所的现实中产生影响,非物理学家使用时必须方便地使用和准确。将评估提出的无线方法的局限性,以确定原型的可行性和未来的方向。这项研究旨在在血管信号分析和无线可穿戴传感器设计领域生产创新的平台技术,同时进行假设驱动的研究。尚未公开对相对于血管渗透狭窄水平和位置的唱片图和皮肤温度测量的全面分析。发表的无线筛查工具的示例已通过熟练的操作员依赖传统的听诊。我们试图证明适合临床部署的最先进的电子和传感器集成技术的可行性。这项技术将是临床翻译的绝佳候选者,因为它可以在独立透析诊所的经济限制内简单筛选血管通行通畅。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible, Structured MWCNT/PDMS Sensor for Chronic Vascular Access Monitoring.
用于慢性血管通路监测的灵活、结构化 MWCNT/PDMS 传感器。
SKIN-COUPLED PVDF MICROPHONES FOR NONINVASIVE VASCULAR BLOOD SOUND MONITORING.
用于无创血管血音监测的皮肤耦合 PVDF 麦克风。
Stenosis Characterization and Identification for Dialysis Vascular Access.
Vascular Graft Pressure-Flow Monitoring Using 3D Printed MWCNT-PDMS Strain Sensors.
使用 3D 打印的 MWCNT-PDMS 应变传感器监测血管移植物压力流量。
Power Wheelchair Footplate Pressure and Positioning Sensor.
电动轮椅踏板压力和定位传感器。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Majerus其他文献

Steve Majerus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Majerus', 18)}}的其他基金

Triggered sacral neuromodulation to treat neurogenic detrusor overactivity based on algorithmic classification of bladder filling status from wireless pressure data.
根据无线压力数据对膀胱充盈状态的算法分类,触发骶神经调节来治疗神经源性逼尿肌过度活动。
  • 批准号:
    10317462
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Toward wearable ultrasonic neurostimulation for daily at-home treatment of urinary urge incontinence
用于日常家庭治疗急迫性尿失禁的可穿戴超声神经刺激
  • 批准号:
    10363621
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

OCTA Precursors of Vision-Threatening Complications of Diabetic Retinopathy
OCTA 糖尿病视网膜病变视力威胁并发症的前兆
  • 批准号:
    10718643
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
AI-based Cardiac CT
基于人工智能的心脏CT
  • 批准号:
    10654259
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Monitoring of Glaucoma Patients in Advanced Disease
晚期青光眼患者的监测
  • 批准号:
    10503781
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Monitoring of Glaucoma Patients in Advanced Disease
晚期青光眼患者的监测
  • 批准号:
    10680523
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了