Controlling sphingosine 1-phosphate synthesis and trafficking

控制 1-磷酸鞘氨醇的合成和运输

基本信息

  • 批准号:
    9330886
  • 负责人:
  • 金额:
    $ 52.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Sphingosine kinases (SphK1, SphK2) catalyze the formation of an important extracellular mediator, sphingosine 1-phosphate (S1P). A fundamental aspect of S1P biology is the large difference in S1P abundance between blood or lymph (high) and tissue (low), which is termed the S1P vascular gradient. This gradient maintains vascular endothelial barrier function and facilitates lymphocyte mobilization from lymphoid tissues. Indeed, S1P1 receptor agonist drugs (e.g. fingolimod) are therapeutically beneficial because S1P signaling is highly sensitive to changes in S1P gradient. We used our SphK2 inhibitors to demonstrate that interdicting S1P signaling at the level of synthesis steepens the S1P vascular gradient by slowing S1P clearance from the blood. This result suggests that SphK2 inhibitors will be extremely useful in treating conditions where the endothelial barrier is compromised, e.g. acute kidney injury and sepsis. Although our recently discovered SphK2 inhibitors are active in vivo, improvements in potency, oral availability and chemical diversity are needed to advance them to the clinic. We will accomplish these goals by generating additional inhibitors on our current chemical scaffold and by developing a novel second scaffold. The current scaffold has also yielded a few SphK1 inhibitors but these lack potency at mouse SphK1, which precludes their testing for efficacy in some key disease models. In contrast to SphK2, inhibition of Sphk1 decreases the S1P vascular gradient and to probe the resulting physiological consequences, multiple inhibitors are needed. We will use iterative rounds of synthesis and testing to generate a library of SphK1 inhibitors with emphases on increasing their potency at mouse SphK1 and discovering inhibitors that have suitable pharmacokinetic properties in rodents. To understand the molecular mechanism of SphK inhibition as well as to inform the synthetic chemistry strategies, we will solve the structures of both isozymes with bound inhibitors using X-ray crystallography. Finally, we will discover a blocker of the S1P exporter, SPNS2, which provides the S1P to lymph and thereby maintains the S1P vascular gradient that is required for lymphocyte egress from lymphoid organs to lymph. Currently, due to the unavailability of SPNS2 inhibitors, this particular approach to the manipulation of S1P gradient and subsequent immunomodulation remains completely unexplored. The strength of our program is the synergism in the combination of chemistry (Santos) and pharmacology (Lynch) to which we now add structural biology (Faham). Our central theme of is to understand the therapeutic potential of manipulating the S1P gradients either at the level of synthesis (SphK inhibition) or transport (SPNS2 blockade). We have a track record of productivity that enabled a fundamental insight into S1P biology, e.g. our discovery that SphK2 inhibition modulates S1P signaling to protect endothelial function, a new therapeutic strategy. Now, we propose the development and detailed characterization of greatly improved SphK inhibitors and to make the chemical tools necessary to interrogate SPNS2 as a potential drug target.
鞘氨醇激酶(SPHK1,SPHK2)催化重要的细胞外介体的形成, 1-磷酸盐(S1P)。 S1P生物学的一个基本方面是S1P的巨大差异 血液或淋巴(高)和组织(低)之间的丰度,称为S1P血管梯度。这 梯度维持血管内皮屏障功能,并促进淋巴管的淋巴细胞动员 组织。实际上,S1P1受体激动剂药物(例如芬洛莫德)在治疗上是有益的,因为S1P 信号对S1P梯度的变化高度敏感。我们使用SPHK2抑制剂证明 在合成水平上固定S1P信号传导通过减慢S1P来降低S1P血管梯度 从血液中清除。该结果表明SPHK2抑制剂将在治疗中非常有用 内皮屏障被损害的条件,例如急性肾脏损伤和败血症。虽然我们的 最近发现的SPHK2抑制剂在体内活跃,效力,口服可用性和化学 需要多样性才能将它们推向诊所。我们将通过产生更多的目标来实现这些目标 对我们当前的化学支架的抑制剂,并通过开发新的第二支架。当前的脚手架 还产生了一些SPHK1抑制剂,但是在鼠标SPHK1上缺乏效力,这排除了他们的测试 在某些关键疾病模型中的功效。与SPHK2相反,SPHK1的抑制降低了S1P血管 为了探测所得的生理后果,需要多种抑制剂。我们将使用 迭代的合成和测试回合,以生成SPHK1抑制剂库,重点是增加 它们在小鼠SPHK1的效力并发现具有合适药代动力学特性的抑制剂 啮齿动物。了解SPHK抑制的分子机制,并告知合成 化学策略,我们将使用X射线解决两种同工酶的结构 晶体学。最后,我们将发现S1P出口商SPNS2的一个阻滞剂,该扩展器将S1P提供给 淋巴,从而维持S1P血管梯度,这是从淋巴样中出口所需的S1P血管梯度 器官到淋巴。目前,由于SPNS2抑制剂无法获得,这种特殊的方法 S1P梯度的操纵和随后的免疫调节仍未完全探索。这 我们计划的优势是化学(Santos)和药理学(Lynch)组合的协同作用 我们现在添加结构生物学(Faham)。我们的中心主题是了解治疗性 在合成水平(SPHK抑制)或运输水平下操纵S1P梯度的潜力 (SPNS2封锁)。我们有生产力的记录,使S1P具有基本见解 生物学,例如我们发现SPHK2抑制作用调节S1P信号传导以保护内皮功能,这是一个新的 治疗策略。现在,我们提出了大大改进的发展和详细表征 SPHK抑制剂并制造将SPNS2作为潜在药物靶靶的必要化学工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KEVIN R. LYNCH其他文献

KEVIN R. LYNCH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KEVIN R. LYNCH', 18)}}的其他基金

Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
  • 批准号:
    10542382
  • 财政年份:
    2019
  • 资助金额:
    $ 52.77万
  • 项目类别:
Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
  • 批准号:
    10319600
  • 财政年份:
    2019
  • 资助金额:
    $ 52.77万
  • 项目类别:
MD-PHAR Controlling sphingosine 1-phosphate synthesis and trafficking
MD-PHAR 控制 1-磷酸鞘氨醇合成和运输
  • 批准号:
    10157761
  • 财政年份:
    2016
  • 资助金额:
    $ 52.77万
  • 项目类别:
In Vivo Probes of Sphingosine Kinase Function
鞘氨醇激酶功能的体内探针
  • 批准号:
    8734453
  • 财政年份:
    2013
  • 资助金额:
    $ 52.77万
  • 项目类别:
In Vivo Probes of Sphingosine Kinase Function
鞘氨醇激酶功能的体内探针
  • 批准号:
    8598734
  • 财政年份:
    2013
  • 资助金额:
    $ 52.77万
  • 项目类别:
In Vivo Probes of Sphingosine Kinase Function
鞘氨醇激酶功能的体内探针
  • 批准号:
    8918686
  • 财政年份:
    2013
  • 资助金额:
    $ 52.77万
  • 项目类别:
Mitochondrial Lipid Kinase
线粒体脂质激酶
  • 批准号:
    8410575
  • 财政年份:
    2012
  • 资助金额:
    $ 52.77万
  • 项目类别:
Mitochondrial Lipid Kinase
线粒体脂质激酶
  • 批准号:
    8241280
  • 财政年份:
    2012
  • 资助金额:
    $ 52.77万
  • 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
  • 批准号:
    8206342
  • 财政年份:
    2004
  • 资助金额:
    $ 52.77万
  • 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
  • 批准号:
    8309078
  • 财政年份:
    2004
  • 资助金额:
    $ 52.77万
  • 项目类别:

相似海外基金

The role of estrogen receptor alpha in prostatic fibrosis contributing to benign prostatic hyperplasia
雌激素受体α在导致良性前列腺增生的前列腺纤维化中的作用
  • 批准号:
    10607151
  • 财政年份:
    2023
  • 资助金额:
    $ 52.77万
  • 项目类别:
Regulation of Adenylyl Cyclase Signaling Pathways
腺苷酸环化酶信号通路的调节
  • 批准号:
    10689698
  • 财政年份:
    2022
  • 资助金额:
    $ 52.77万
  • 项目类别:
Regulation of Adenylyl Cyclase Signaling Pathways
腺苷酸环化酶信号通路的调节
  • 批准号:
    10405311
  • 财政年份:
    2022
  • 资助金额:
    $ 52.77万
  • 项目类别:
Interactions of Androgen Production, Uptake and Metabolism on outcome in Castration Resistant Prostate Cancer
雄激素产生、摄取和代谢的相互作用对去势抵抗性前列腺癌预后的影响
  • 批准号:
    10460400
  • 财政年份:
    2021
  • 资助金额:
    $ 52.77万
  • 项目类别:
Elucidating sympathetic vasoconstrictor mechanisms of autonomic dysreflexia in persons with spinal cord injury
阐明脊髓损伤患者自主神经反射异常的交感血管收缩机制
  • 批准号:
    10404588
  • 财政年份:
    2021
  • 资助金额:
    $ 52.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了