Targeting mechanisms of inter-organelle communication to promote healthy aging
细胞器间通讯的靶向机制促进健康衰老
基本信息
- 批准号:9812866
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseATF6 geneAddressAgeAge of OnsetAgingAnimalsAutomobile DrivingBehaviorBiologicalBiological ProcessCREB1 geneCaenorhabditis elegansCardiovascular DiseasesCellsCellular Metabolic ProcessCellular biologyClinicalCommunicationComorbidityCoupledDataDefectDiabetes MellitusDietary InterventionDiseaseElderlyEndoplasmic ReticulumFertilityGene ExpressionGenesGeneticGenetic ModelsGoalsGrowthHealthHomeostasisImmunityIndividualInterventionKnowledgeLinkLongevityMalignant NeoplasmsMammalian CellMediatingMediator of activation proteinMembraneMetabolicMetabolismMicroscopyMitochondriaModelingMolecularMorbidity - disease rateMorphologyNeurodegenerative DisordersNuclearOnset of illnessOrganellesOsteoporosisOutputPathologyPathway interactionsPatientsPhasePhysiologyPlayProtein KinaseProteinsPublic HealthRegulationReproductionResolutionRisk FactorsRoleShapesSignal TransductionSiteStrokeSystemTestingTherapeuticTrainingTranscription CoactivatorTransgenic OrganismsTranslatingage relatedageddesigndetection of nutrientdifferential expressionfunctional declinegene therapyhealthy agingimprovedin vivoin vivo monitoringinsightlipid metabolismmetabolomicsmitochondrial metabolismnovelpreventproteostasisresponsesensorside effecttargeted treatmenttherapeutic developmenttooltranscription factor
项目摘要
Project Summary/Abstract
Age-onset diseases including cancer, neurodegenerative disease, diabetes, cardiovascular disease, stroke,
and osteoporosis are generating a public health burden that is quickly becoming insurmountable. Exacerbating
this problem, co-morbidities are common among the elderly. The ideal therapeutic strategy to confront this
crisis is to target a unifying risk factor, but patient age is the only risk factor common to all these diseases.
Fortunately, it is increasingly clear that the biological processes of aging are malleable, thus the rate and
quality of aging may be improved. Genetic and nutritional interventions causing real or perceived energy-
depletion are robust, conserved mechanisms to promote healthier aging. Unfortunately these interventions,
e.g. activation of the molecular low-energy sensor AMPK, also carry clinically unacceptable side effects, such
as suppressed immunity and fertility. Translating these findings into therapeutics thus requires identification of
downstream mechanisms that are sufficient for healthier aging. Through a genetic model of longevity in C.
elegans via activation of AMPK, we demonstrated that the negative side-effects of energy-depletion can be
uncoupled from the positive effects on healthy aging. Using unbiased, systems-level approaches, we found
that the longevity-specific mechanism involves downstream regulation of mitochondrial dynamics and
metabolic functions, and we now demonstrate that regulation of mitochondrial dynamics is causal to AMPK
longevity. New data indicate that perturbing the unfolded protein response (UPR), which mediates homeostasis
of the endoplasmic reticulum (ER), interacts with the AMPK pathway to extend lifespan through a mechanism
that also requires mitochondrial remodeling. Given recent studies showing that the ER physically interacts with
mitochondria to regulate organelle morphology and metabolic signaling, these data suggest a new paradigm in
aging: ER/mitochondrial regulation of longevity occurs through an integrated metabolic mechanism. Physical
changes in mitochondrial networks are a hallmark of aging, but how organelle dynamics are mechanistically
involved in longevity is unknown. By genetically inactivating mediators of mitochondrial remodeling
(fission/fusion), Aim 1 will define how mitochondrial dynamics drive the changes in mitochondrial metabolism
associated with low-energy longevity. Through novel transgenics and training in high-resolution microscopy in
Aim 2, I will test the hypothesis that UPRER perturbations promote altered mitochondrial morphology and
signaling between organelles. Finally in the R00 phase, Aim 3 will build on the tools and insights developed in
Aims 1 and 2 to identify genetic mechanisms in C. elegans by which ER-mitochondrial inter-organelle
communication can be directly targeted to extend healthy lifespan and protect metabolic homeostasis. Taken
together, the goal of this proposal is to identify how evolutionarily conserved energy-sensing pathways
coordinately modulate inter-organelle signaling and metabolic function to promote longevity.
项目概要/摘要
老年性疾病包括癌症、神经退行性疾病、糖尿病、心血管疾病、中风、
骨质疏松症正在给公众健康带来负担,而且这种负担很快就会变得难以克服。加剧
这个问题,合并症在老年人中很常见。应对这一问题的理想治疗策略
危机的目标是统一危险因素,但患者年龄是所有这些疾病唯一共同的危险因素。
幸运的是,越来越清楚的是,衰老的生物过程是可塑的,因此衰老的速度和速度
老龄化质量可能会得到改善。遗传和营养干预导致实际或感知的能量-
耗竭是促进健康衰老的强大而保守的机制。不幸的是这些干预措施
例如分子低能传感器AMPK的激活,也会带来临床上不可接受的副作用,例如
由于免疫力和生育能力受到抑制。因此,将这些发现转化为治疗方法需要确定
足以实现健康老龄化的下游机制。通过 C 长寿的遗传模型。
通过激活 AMPK 在线虫中,我们证明能量消耗的负面副作用可以是
与健康老龄化的积极影响无关。使用公正的系统级方法,我们发现
长寿特异性机制涉及线粒体动力学的下游调节
代谢功能,我们现在证明线粒体动力学的调节是 AMPK 的因果关系
长寿。新数据表明,扰乱介导体内平衡的未折叠蛋白反应(UPR)
内质网 (ER) 的一部分,与 AMPK 通路相互作用,通过一种机制延长寿命
这也需要线粒体重塑。鉴于最近的研究表明 ER 与
线粒体调节细胞器形态和代谢信号,这些数据提出了一种新的范式
衰老:内质网/线粒体对寿命的调节是通过综合代谢机制实现的。身体的
线粒体网络的变化是衰老的标志,但细胞器动力学的机制如何
与长寿有关尚不清楚。通过基因灭活线粒体重塑的介质
(裂变/融合),目标 1 将定义线粒体动力学如何驱动线粒体代谢的变化
与低能量长寿有关。通过新颖的转基因技术和高分辨率显微镜训练
目标 2,我将检验以下假设:UPRER 扰动会促进线粒体形态的改变
细胞器之间的信号传递。最后在 R00 阶段,Aim 3 将建立在开发的工具和见解的基础上
目标 1 和 2 确定线虫中 ER 线粒体间细胞器的遗传机制
沟通可以直接延长健康寿命并保护代谢稳态。采取
总之,该提案的目标是确定进化上如何保守的能量传感途径
协调调节细胞器间信号传导和代谢功能以促进长寿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristopher Burkewitz其他文献
Kristopher Burkewitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristopher Burkewitz', 18)}}的其他基金
Targeting ER-mitochondrial calcium signaling to promote healthier aging
靶向 ER 线粒体钙信号传导以促进更健康的衰老
- 批准号:
10443143 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Targeting ER-mitochondrial calcium signaling to promote healthier aging
靶向 ER 线粒体钙信号传导以促进更健康的衰老
- 批准号:
10643969 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Targeting mechanisms of inter-organelle communication to promote healthy aging
细胞器间通讯的靶向机制促进健康衰老
- 批准号:
9242811 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Targeting mechanisms of inter-organelle communication to promote healthy aging
细胞器间通讯的靶向机制促进健康衰老
- 批准号:
9886173 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Targeting novel AMPK effectors in the regulation of healthy aging
靶向新型 AMPK 效应物调节健康衰老
- 批准号:
8527019 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Targeting novel AMPK effectors in the regulation of healthy aging
靶向新型 AMPK 效应物调节健康衰老
- 批准号:
8803201 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
PRKAG2基因自发新突变K485E引起心脏电生理异常的机制研究
- 批准号:81400259
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Role of SIK3 in PKA/mTORC1 regulation of adipose browning
SIK3 在 PKA/mTORC1 调节脂肪褐变中的作用
- 批准号:
10736962 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Regulation of CSE-Derived Hydrogen Sulfide in the Heart
CSE 衍生的硫化氢在心脏中的调节
- 批准号:
10659832 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Cell-free hemoglobin-oxidized LDL-LOX-1 axis and microvascular hyperpermeability during sepsis
脓毒症期间无细胞血红蛋白氧化的 LDL-LOX-1 轴和微血管通透性过高
- 批准号:
10739620 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Nutrient-sensor O-GlcNAc Transferase Regulation of Autophagy in Homeostatis of Pancreatic Beta-cell Mass and Function
营养传感器 O-GlcNAc 转移酶对胰腺 β 细胞质量和功能稳态中自噬的调节
- 批准号:
10907874 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: