A wireless fully-passive miniaturized patient-tailored pacemaker
无线全无源微型患者定制起搏器
基本信息
- 批准号:9809482
- 负责人:
- 金额:$ 18.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAnisotropyArchitectureAtrial FibrillationBiocompatible MaterialsBiomimeticsCaliberCardiacCardiac MyocytesCardiomyopathiesCardiovascular PhysiologyCessation of lifeCoronaryCoronary sinus structureDataDetectionDevelopmentElectric ConductivityElectrical EngineeringElectrocardiogramElectrodesElectronicsFreedomFunctional disorderGenerationsGoalsGoldHeartHeart failureHeterogeneityHistologyHumanHydrogelsHypertrophyImpairmentImplantIn VitroInfectionLeadLeftLocationLungMeasuresMechanicsMetalsModelingMonitorMorphologyMyocardial InfarctionMyocardiumPacemakersPatientsPerforationPerformancePhysiologic pulsePhysiologicalPumpRattusRight ventricular structureRiskRodentRodent ModelSafetySignal TransductionSiteSprague-Dawley RatsSystemTechnologyTelemetryTestingTherapeuticThoracotomyThrombosisTissue ModelTissuesTricuspid valve structureUltrasonographyVentricularVentricular ArrhythmiaWireless TechnologyWorkabsorptionbasebiomaterial compatibilitycardiac tissue engineeringdensitydesignefficacy testingflexibilityheart functionhemodynamicshuman stem cellsimplantationimprovedin vivoin vivo evaluationinduced pluripotent stem cellinnovationmicrowave electromagnetic radiationminiaturizeminimally invasivemultidisciplinarynanorodnanoscalenext generationpersonalized approachphantom modelprototyperadio frequencyrelease of sequestered calcium ion into cytoplasmresponserib bone structuresafety testingsensortransmission process
项目摘要
Summary
Despite major advances in pacemaker technologies during the past decade, current pacemaker systems still
suffer from several critical limitations. Primarily, the need to implant pacemaker leads within cardiac chambers
could lead to a host of complications such as infection, thrombosis, tricuspid valve and ventricular perforation,
along with the complications associated with the extraction of the lead when required. Furthermore, with
traditional pacemakers, the cardiac regions accessible to pacing are restricted to right ventricle (RV, typically at
the apex) and occasionally, coronary sinus distribution in cases of biventricular pacing. RV pacing creates
abnormal left ventricular (LV) contraction, reduced pump function, hypertrophy, ultrastructural abnormalities and
increases risk of atrial fibrillation, ventricular arrhythmias and ultimately heart failure and death. Leadless
pacemakers address the issue associated with intravascular leads, but they remain limited in pacing only the RV
and require placement of a new pacemaker after battery depletion. The recently developed remote ultrasound-
powered wireless LV pacing electrode in conjunction with traditional pacemaker for biventricular pacing is
technically limited by need for an acoustic window free of rib cage and lung on the transmission path to the
electrode and the high density ultrasound drains battery quickly. To overcome the limitations of currently
available pacemakers, we propose to develop the next generation of pacemaker system composed of
wireless, miniaturized, battery-free, radiofrequency (RF) microwave activated sensor/stimulator
electrodes that could be implantable and controlled by a remote pulse generator. In Aim 1, we will pursue
technical development of miniaturized wireless sensor/stimulator electrodes, operating as a stand-alone
platform, and remote pulse generator controller to monitor simulated cardiac signals and provide pacing signals
using Micro-Electro-Mechanical-Systems (MEMS) and RF technologies on an organic phantom model while
testing safety by measuring heat generation and extraneous RF interference. In Aim 2, we will test the wireless
pacemaker system in vitro by measuring signal detection, pacing stimulation and tissue safety on our validated
biomimetic cardiac micro-tissue model, using human induced pluripotent stem cell derived CMs (hiPSCs-CMs),
as well as in vivo using a rodent thoracotomy model. We envision that the proposed innovative wireless
pacemaker system could usher a paradigm shift in pacemaker therapeutics through the ability to pace precise
regions of the heart resulting in more physiologic pacing and optimization of cardiac performance.
!
概括
尽管起搏器技术在过去十年中取得了重大进步,但当前的起搏器系统仍然
受到几个关键的限制。主要是需要在心室内植入起搏器导线
可能导致一系列并发症,如感染、血栓形成、三尖瓣和心室穿孔,
以及在需要时与拔出引线相关的并发症。此外,与
传统的起搏器,可进行起搏的心脏区域仅限于右心室(RV,通常位于
心尖),偶尔,双心室起搏情况下的冠状窦分布。 RV 起搏会产生
左心室 (LV) 收缩异常、泵功能降低、肥大、超微结构异常和
增加心房颤动、室性心律失常以及最终心力衰竭和死亡的风险。无引线
起搏器解决了与血管内导线相关的问题,但它们仅在右心室起搏方面受到限制
并需要在电池耗尽后放置新的起搏器。最近开发的远程超声-
供电无线左心室起搏电极与传统起搏器相结合进行双心室起搏
技术上的限制是需要在传输路径上没有肋骨和肺部的声窗
电极和高密度超声波会快速耗尽电池电量。为克服目前的局限性
可用的起搏器,我们建议开发下一代起搏器系统,包括
无线、小型、无电池、射频 (RF) 微波激活传感器/刺激器
可以植入并由远程脉冲发生器控制的电极。在目标1中,我们将追求
小型化无线传感器/刺激器电极的技术开发,作为独立操作
平台和远程脉冲发生器控制器,用于监测模拟心脏信号并提供起搏信号
在有机体模模型上使用微机电系统 (MEMS) 和射频技术,同时
通过测量热量产生和外部射频干扰来测试安全性。在目标 2 中,我们将测试无线
通过在我们经过验证的设备上测量信号检测、起搏刺激和组织安全性来体外起搏器系统
仿生心脏微组织模型,使用人类诱导多能干细胞衍生的 CM(hiPSC-CM),
以及使用啮齿动物开胸手术模型进行体内实验。我们预计所提议的创新无线
起搏器系统可以通过精确起搏的能力引领起搏器治疗的范式转变
心脏区域导致更多的生理起搏和心脏性能的优化。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer M Blain Christen其他文献
Jennifer M Blain Christen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer M Blain Christen', 18)}}的其他基金
A wireless fully-passive miniaturized patient-tailored pacemaker
无线全无源微型患者定制起搏器
- 批准号:
10002217 - 财政年份:2019
- 资助金额:
$ 18.18万 - 项目类别:
A wireless fully-passive miniaturized patient-tailored pacemaker
无线全无源微型患者定制起搏器
- 批准号:
10249134 - 财政年份:2019
- 资助金额:
$ 18.18万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
- 批准号:
10596518 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
- 批准号:
10340194 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
A wireless fully-passive miniaturized patient-tailored pacemaker
无线全无源微型患者定制起搏器
- 批准号:
10002217 - 财政年份:2019
- 资助金额:
$ 18.18万 - 项目类别:
A wireless fully-passive miniaturized patient-tailored pacemaker
无线全无源微型患者定制起搏器
- 批准号:
10249134 - 财政年份:2019
- 资助金额:
$ 18.18万 - 项目类别:
Diagnosing Small Joints by Soft Ultrasound Probes
通过软超声探头诊断小关节
- 批准号:
9437235 - 财政年份:2017
- 资助金额:
$ 18.18万 - 项目类别: