Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
基本信息
- 批准号:9804546
- 负责人:
- 金额:$ 10.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-04 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAcrylamidesAgitationAmidesAreaBite ForceChemistryClinicalComposite ResinsCovalent InteractionDataDental MaterialsDevelopmentDiffusionDimensionsEmulsionsEncapsulatedEstersEstheticsEvaluationFaceFailureFillerFoundationsFractureFutureGoalsGrowthHigh Pressure Liquid ChromatographyKineticsLaboratoriesLeadLifeLongevityMasticationMentorsMethacrylatesMethodsMicrocapsules drug delivery systemMicroencapsulationsModificationPhasePhysiologicalProcessProductionPropertyProsthodontic specialtyPrunella vulgarisReactionReproducibilityResearchResearch PersonnelResistanceResourcesShapesSolidSpectrum AnalysisStandardizationStressStructureSurfaceSystemTechniquesTechnologyTemperatureTestingTrainingTranslationsViscosityWalkersbasecapsulecareercomposite restorationdesignhealingimprovedinnovationmechanical propertiesmonomernovelnovel strategiesoral conditionpolymerizationpolymerization stressprematurepreventrepairedrestorationrestorative compositeside effectskillssuccessthermal stress
项目摘要
PROJECT SUMMARY/ABSTRACT
Resin composite restoration failure is strongly associated to internal microcracks caused by the masticatory
forces. A promising strategy to overcome this shortcoming lies is the addition of healing microcapsules in the
organic matrix. These capsules, when reached by the crack, are broken and release the healing agent,
inhibiting its propagation. However, there are several critical gaps and crucial improvements to make this
approach suitable and commercially viable. Our long-term goals are to introduce optimized healing agents,
minimize the side effects of addition of the capsules, via shell wall functionalization, and validate advanced
method for encapsulation. Previous studies revealed that low viscosity amides are capable of modulating the
polymerization reaction, and more tough and degradation-resistant than methacrylates, so these compounds
are going to be used as alternative healing agents. In addition, thiourethane surface functionalization has
been shown to be an efficient method to increase fracture toughness and reduce polymerization stress, so
we propose to functionalize the capsule surface with this compound – the methods for functionalization were
developed in our laboratory, which increases the chance of success. Finally, we will aim at overcoming the
main issues involved in the double-emulsion method, such as poor size control of the capsules and high
sensitivity of the method, by utilizing coaxial electrohydrodynamic atomization (CEHDA) technique for the
encapsulation process. In summary, the following Specific Aims are proposed: (1) To introduce amides as
healing agents, (2) To functionalize the microcapsule’s surface with thiourethane oligomers, and (3) To
improve encapsulation process with advanced technology. Capsules will be characterized by SEM, HPLC,
and Mid-IR spectroscopy. Self-healing composites will be tested for: kinetics, DMA, and mechanical
properties under simulate oral conditions, and finally, the healing process analyzed by Serial Block-Face
SEM. The central hypothesis is that the tough healing agent, shell wall functionalization, and introduction of
CEHDA method to produce capsules will significantly increase the potential and viability of self-healing dental
materials. The skills and new techniques necessary to accomplish the research plan will be acquired from
the mentoring team (Drs. Carmem Pfeifer, Jack Ferracane, Luiz Bertassoni, Mary Anne Melo, Sung Yi and
Travis Walker), who have pioneering expertise in using the proposed methods and strategies.
Complementary background will be gained from seminars, structured tutorials and courseworks. The
combination of the new skills learned during the K99 mentored phase with my prior expertise in dental
materials characterization, and the advanced clinical training in Prosthodontics will lay the foundation of my
independent career, focused on smart dental materials. Additionally, this proposal will broadly impact the
field by modifying and improving essential self-healing components and developing an alternative method for
encapsulation process, making this approach a tangible resource for resin composites survival.
项目摘要/摘要
树脂综合修复失败与咀嚼器引起的内部微裂纹密切相关。
力量
有机矩阵。
抑制是传播的。
适合和商业的生存能力。
最小化胶囊添加的副作用,通过壳壁功能化,并验证高级
封装方法。
与甲基丙烯酸酯相比,聚合反应,更坚韧和抗降解,因此这些化合物
将用作替代疗法。
被证明是有效的方法韧性并减轻了聚合应力,因此
我们建议用化合物 - 功能化方法功能化胶囊表面
在我们的实验室中发展,这增加了成功的变化。
双乳液方法中涉及的主要问题,例如胶囊的尺寸控制差和高
该方法的敏感性,利用同轴电血动力学雾化(CEHDA)技术
封装过程。
治愈剂,(2)用thiouréthane低聚物来使微胶囊的表面和(3)也
用高级技术改善封装过程。
和IR光谱法。
在模拟口服条件下的特性,最后是通过串行区块分析的愈合过程
SEM。
CEHDA生产胶囊的方法将显着提高自我修复牙齿的潜力和生存能力
材料。
指导团队(Carmem Pfeifer博士,Jack Ferracane,Luiz Bertassoni,Mary Anne Melo,Sung Yi和
特拉维斯·沃克(Travis Walker),他们在使用拟议的方法和策略方面具有开创性的专业知识。
互补的背景将从研讨会,结构化教程和课程中获得
在K99指导阶段的新技能学习与我先前在牙科方面的专业知识的结合
材料表征和假体的高级临床培训将奠定我的基础
独立的职业,重点是智能牙科材料。
通过修改和改善基本的自我修复组件并开发一种替代方法来领域
封装过程,将此Apporo资源用于树脂综合生存。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Paula Piovezan Fugolin其他文献
Ana Paula Piovezan Fugolin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Paula Piovezan Fugolin', 18)}}的其他基金
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
10530744 - 财政年份:2022
- 资助金额:
$ 10.87万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
10609093 - 财政年份:2022
- 资助金额:
$ 10.87万 - 项目类别:
Novel Strategies for Self-Healing Dental Materials
自修复牙科材料的新策略
- 批准号:
10006815 - 财政年份:2019
- 资助金额:
$ 10.87万 - 项目类别:
相似国自然基金
丙酸通过改善线粒体功能障碍缓解丙烯酰胺诱导神经损伤的分子机制
- 批准号:32302251
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型两亲性含氟丙烯酰胺单体及其均聚物的精确合成及其19F核磁共振成像性能的研究
- 批准号:52203005
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
丙烯酰胺调控CACNA1I和ERK1/2通路在油炸食品影响儿童睡眠中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MOF-74衍生物定向诱导丙烯酰胺类原位聚合材料的构筑及其导热、吸波性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丙烯酰胺暴露与2型糖尿病风险的关联及miR-128-1调控NRF2/ARE通路促进氧化应激在其中的作用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining Nuclear H2O2 Regulation by Covalent Regulators
通过共价调节剂定义核 H2O2 调节
- 批准号:
10725269 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
- 批准号:
10667740 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Gelbrane: Combined Gel and Membrane for Robust Western Blotting
Gelbrane:结合凝胶和膜实现稳健的蛋白质印迹
- 批准号:
10759072 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
KRAS G12C: Kinetic and Redox Characterization of Covalent Inhibition
KRAS G12C:共价抑制的动力学和氧化还原表征
- 批准号:
10682167 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Chemical Biology-Based Tools to Uncover the Function of PARP16 in cancer
基于化学生物学的工具揭示 PARP16 在癌症中的功能
- 批准号:
10750279 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别: