Development and Acceptability of an Ambient In-Home Activity Assessment Tool for Stroke
中风室内环境活动评估工具的开发和可接受性
基本信息
- 批准号:9804369
- 负责人:
- 金额:$ 18.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdherenceAlgorithmsAssessment toolCaringChronicChronic PhaseClientClinicalClinics and HospitalsCommunitiesDataDevelopmentElderlyEnvironmentExerciseFatigueFocus GroupsGaitGoalsGoldHealthcareHome environmentImageIndividualInsuranceInterventionLaboratoriesLifeMeasurementMeasuresMonitorMotivationMotorNetwork-basedNeurologicOccupationalOccupational TherapistOutcomeOutcome AssessmentPainParticipantPatient Self-ReportPatientsPatternPerformancePopulationProcessRecurrenceRegulationRehabilitation therapyReportingResearchResearch PersonnelRiskStrokeSystemTechnologyTestingTimeTrainingUnited StatesWorkadherence ratebasecognitive functionconvolutional neural networkdisabilityexercise programexperiencefallshemiparesismonitoring devicenovelpost strokeprogramssensorstroke interventionsuccesstoolwearable device
项目摘要
1. Project Summary/Abstract
Stroke is the leading cause of serious, long-term disability in the United States and those that do not
exercise or engage in regular activity are at a 30% increased risk of experiencing a recurrent stroke. One-on-
one rehabilitation sessions are frequently limited in number due to insurance regulations and therapists
(physical and occupational) frequently prescribe home-based exercise programs. These programs historically
have low adherence rates and patient report can often be biased, incomplete, or inaccurate. Wearable sensors
can track amount of activity but these sensors are limited in scope and cannot discern between various
activities. Depth sensors can be used in the home to detect falls and monitor in-home gait patterns of well older
adults. Other researchers have used depth sensors to detect and discern activities in laboratories or mock
home environments with a population without any disabilities. In this proposal, the Daily Activity Recognition
and Assessment System (DARAS) will merge prior ambient depth sensor work with newly developed
algorithms to objectively and accurately measure the amount and type of activity of people with stroke living at
home. This will be completed in three specific aims. The DARAS algorithms will be developed and refined for
recognizing activities of people with stroke in the kitchen environment using the Foresite depth sensor. These
algorithms will be trained using real-world data from lab-based testing with individuals with stroke (n =10). We
will refine the Convolutional Neural Networks (CNN) based algorithm for accurately segmenting and
recognizing activities from untrimmed processing of depth videos. The developed activity recognition system
will be deployed in the homes of 10 individuals with stroke over the course of 1 year. To determine the impact
on daily life and acceptability of the system and generated data, focus groups will be held with 10 individuals
with stroke. The DARAS developed in this proposal will provide a novel outcome assessment for a variety of
post-stroke interventions and provide occupational therapists the ability to detect declines in performance early
on and intervene.
1. 项目概要/摘要
在美国和其他国家,中风是导致严重、长期残疾的主要原因
锻炼或从事常规活动会使中风复发的风险增加 30%。一对一——
由于保险法规和治疗师的原因,一次康复治疗的次数经常受到限制
(身体和职业)经常制定家庭锻炼计划。这些节目在历史上
依从率低,患者报告通常可能有偏差、不完整或不准确。可穿戴传感器
可以跟踪活动量,但这些传感器的范围有限,无法区分各种活动
活动。深度传感器可用于家庭中检测跌倒并监控老年人的家庭步态模式
成年人。其他研究人员已经使用深度传感器来检测和识别实验室或模拟中的活动
人口没有任何残疾的家庭环境。在该提案中,日常活动识别
和评估系统(DARAS)将把之前的环境深度传感器工作与新开发的结合起来
客观准确地测量生活在中风患者活动量和类型的算法
家。这将通过三个具体目标来完成。 DARAS 算法将被开发和完善
使用 Foresite 深度传感器识别厨房环境中中风患者的活动。这些
将使用来自中风患者(n = 10)的实验室测试的真实数据来训练算法。我们
将完善基于卷积神经网络(CNN)的算法,以实现准确的分割和
从未经修剪的深度视频处理中识别活动。开发的活动识别系统
将在一年内部署到 10 名中风患者的家中。确定影响
关于日常生活以及系统和生成数据的可接受性,将举行由 10 人参加的焦点小组会议
伴有中风。本提案中开发的 DARAS 将为各种领域提供新颖的结果评估
中风后干预,并为职业治疗师提供早期发现表现下降的能力
并进行干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Marie Proffitt其他文献
Rachel Marie Proffitt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Marie Proffitt', 18)}}的其他基金
Reducing COVID-19 Related Disability in Rural Community-Dwelling Older Adults Using Smart Technology
利用智能技术减少农村社区老年人中与 COVID-19 相关的残疾
- 批准号:
10360303 - 财政年份:2021
- 资助金额:
$ 18.66万 - 项目类别:
Reducing COVID-19 Related Disability in Rural Community-Dwelling Older Adults Using Smart Technology
利用智能技术减少农村社区老年人中与 COVID-19 相关的残疾
- 批准号:
10688192 - 财政年份:2021
- 资助金额:
$ 18.66万 - 项目类别:
Development and Acceptability of an Ambient In-Home Activity Assessment Tool for Stroke
中风室内环境活动评估工具的开发和可接受性
- 批准号:
10016135 - 财政年份:2019
- 资助金额:
$ 18.66万 - 项目类别:
相似国自然基金
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于前景理论的ADHD用药决策过程与用药依从性内在机制研究
- 批准号:72304279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于HAPA理论的PCI术后患者运动依从性驱动机制与干预方案构建研究
- 批准号:72304180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
CAS理论视角下农村老年心血管代谢性共病管理依从性的社区-患者协同机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural Operator Learning to Predict Aneurysmal Growth and Outcomes
神经算子学习预测动脉瘤的生长和结果
- 批准号:
10636358 - 财政年份:2023
- 资助金额:
$ 18.66万 - 项目类别:
Mixed-Methods Evaluation of Mobile Health Adaptive Learning Training for Pediatric Healthcare Workers in Tanzania
坦桑尼亚儿科医护人员移动健康适应性学习培训的混合方法评估
- 批准号:
10863717 - 财政年份:2023
- 资助金额:
$ 18.66万 - 项目类别:
Clinical biomarker for early prediction of chemotherapy-induced peripheral neuropathy
早期预测化疗引起的周围神经病变的临床生物标志物
- 批准号:
10604018 - 财政年份:2023
- 资助金额:
$ 18.66万 - 项目类别:
A prospective clinical trial of immunosuppression reduction in recipients of low eplet mismatched renal allografts: the kidney for life initiative
低 eplet 错配肾同种异体移植受者减少免疫抑制的前瞻性临床试验:肾脏生命倡议
- 批准号:
10704807 - 财政年份:2023
- 资助金额:
$ 18.66万 - 项目类别: